

## **Analysing Characteristics of Smart Home Product Service System (SH-PSS) through Kano Model Approach**

International Symposium on Industrial Engineering and Automation. ISIEA 2023, University of Bozen-Bolzano, Italy



Leeladhar Ganvir and Dr. Pratul Ch. Kalita (Indian Institute of Technology Guwahati, India)





## Research Question RQ1, RQ2, RQ3 and RQ4

- RQ1: What are the characteristics contributing to customer satisfaction/dissatisfaction in a smart home product-service-system (SH-PSS)?
- RQ2: What are the key characteristics that customers perceive as Must be, Attractive, One dimensional, and Indifferent in a smart home product-service-system (SH-PSS) according to the Kano model?
- RQ3: What are the characteristics which impact achieving Sustainability through Product Service Systems in smart home?

### Literature Review

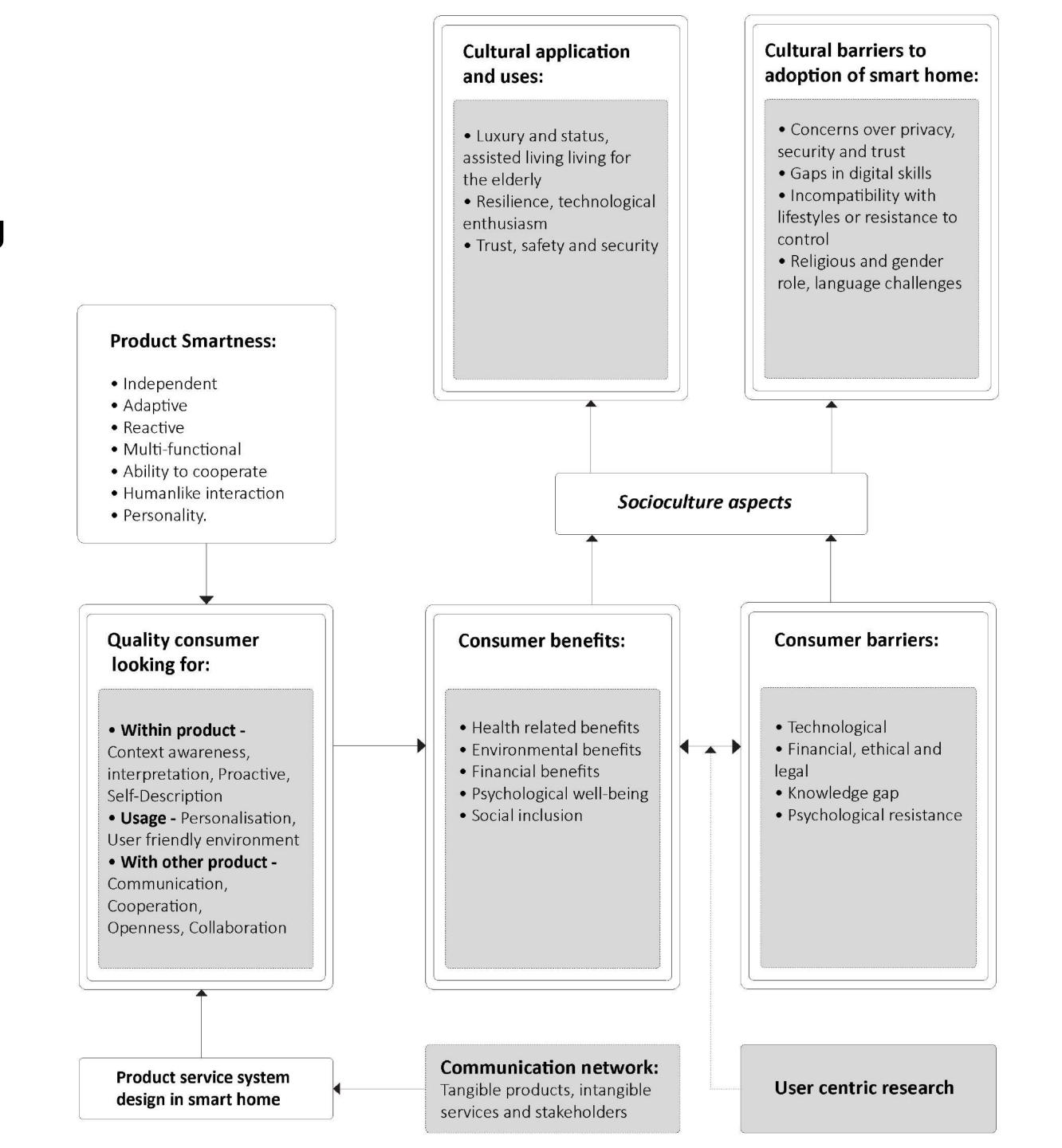
Adoption of Socio-Cultural Aspects in PSS Design for Smart Home Products

Online electronic search via Offline hand search from Web portals to gather Google Scholar, Scopus and information of IoT products hard copies of projects, re-Identification: Web of Science ports, newsletter, books and smart home adoption Collection and compilation of important and relevant literature (Initial Search: 687 articles) **Inclusion Criteria: Exclusion Criteria:**  English language only in the timeframe of Language other then English 2000 to 2021 Only abstract availability • Studies not focused on the area of interest • The presence of the search term in (i.e. IoT product, smart home adoption) keywords or title Full text availability • Research-in-progress articles Screening: Originality and relevancy Articles selected for present study: 143 Emerged: 1. Terms in Smart Home products: 2. Factors affecting smart home adoption 3. Socio Cultural aspect of smart home adoption Categories 4. Product Service System design in smart home

Ganvir, L., & Kalita, C. P. Archives of Design Research, 2022

# Consumer Benefits of Smart Home Adoption Thematic Analysis

|   | Consumer Benefits                                    | Themes                                                                                                                                                                                                                                                                                                                                 | Source                                                                                                                                                                                                                                                                                                                                                                                     |    |
|---|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 | Health related<br>Benefits                           | <ul> <li>Promoting the well-being of ageing and vulnerable people.</li> <li>Care accessibility and comfort</li> <li>Monitoring user safety</li> <li>Consultancy for social connectivity and communication</li> <li>Supporting the detection of life-threatening events</li> <li>Therapy for the reduction of medical errors</li> </ul> | Chan et al., 2008; Demiris et al., 2008; Demiris & Hensel, 2009; Reeder et al., 2013; Courtney et al., 2008; Rantz et al., 2005; Demiris et al., 2004; Finkelstein et al., 2004; Chan et al., 2009; Czaja, 2016; Mynatt et al., 2004; Celler et al., 2003; Finch et al., 2008; Walsh & Callan, 2011; Cavicchi & Vagnoni, 2017; Rahimpour et al., 2008; Matlabi et al., 2012; Kerbler, 2013 | 18 |
| 2 | Environmental<br>Benefits                            | <ul> <li>Environmental sustainability</li> <li>Monitoring and reducing energy usage</li> <li>Consultancy and feedback on energy and resource consumption</li> <li>Suggestions on how to use electricity efficiently and comfortably</li> </ul>                                                                                         | Balta-Ozkan et al., 2014; Chen et al., 2017; Elkhorchani & Grayaa, 2016; Zhou et al., 2016; Beaudin & Zareipour, 2015; Kyriakopoulos & Arabatzis, 2016; Kiesling, 2016; Aye & Fujiwara, 2014; Elhawary, 2014; Balta-Ozkan et al., 2013a; Paetz et al., 2011; Paetz et al., 2012                                                                                                            | 12 |
| 3 | Financial<br>Benefits                                | <ul> <li>Affordability of healthcare</li> <li>Sustainable consumption</li> <li>Cheaper consultancy and monitoring cost of virtual visits</li> </ul>                                                                                                                                                                                    | Balta-Ozkan et al., 2013a; Darby & McKenna, 2012; Hargreaves et al., 2013; Paetz et al., 2012; Faruqui et al., 2010; Balta-Ozkan et al., 2014; Paetz et al., 2011; Park et al., 2018; Park et al., 2018; Steele et al., 2009; Ehrenhard et al., 2014; Kun, 2001                                                                                                                            | 12 |
| 4 | Psychological well-<br>being and social<br>inclusion | <ul> <li>Overcome the feeling of isolation</li> <li>Support</li> <li>Entertainment</li> <li>Virtual interaction</li> </ul>                                                                                                                                                                                                             | Chan et al., 2008; Percival & Hanson, 2006; Demiris et al., 2004; Brandt et al., 2011; Damodaran & Olphert, 2010; Gaul & Ziefle, 2009; Kim et al., 2013; Balta-Ozkan et al., 2013a; Balta-Ozkan et al., 2013b; Khedekar et al., 2017                                                                                                                                                       | 10 |


Ganvir, L., & Kalita, C. P. Archives of Design Research, 2022

# **Consumer Barriers of Smart Home Adoption**Thematic Analysis

|   | Consumer Barriers                        | Themes                                                                                                                                            | Source                                                                                                                                                                                                                                                                           |    |
|---|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 | Technological<br>Barriers                | <ul> <li>Security</li> <li>Usability</li> <li>Privacy intrusion</li> <li>Reliability</li> </ul>                                                   | Balta-Ozkan et al., 2013a; Park et al., 2018; Yang et al., 2017; Alsulami & Atkins, 2016; Czaja, 2016; Diegel, 2005; Kim & Shcherbakova, 2011                                                                                                                                    |    |
| 2 | Financial, Ethical and<br>Legal Barriers | <ul> <li>Price</li> <li>Cost of installation</li> <li>Cost of repair and maintenance</li> <li>Concern about the misuse of private data</li> </ul> | Balta-Ozkan et al., 2014; Chen et al., 2017; Elkhorchani & Grayaa, 2016; Zhou et al., 2016; Beaudin & Zareipour, 2015; Kyriakopoulos & Arabatzis, 2016; Kiesling, 2016; Aye & Fujiwara, 2014; El-hawary, 2014; Balta-Ozkan et al., 2013a; Paetz et al., 2011; Paetz et al., 2012 | 26 |
| 3 | The Knowledge Gab and                    | <ul> <li>Human barrier</li> <li>Resistance to using innovative technology</li> <li>Lack of prior knowledge and experience</li> </ul>              | Balta-Ozkan et al., 2013a; Darby & McKenna, 2012; Hargreaves et al., 2013; Paetz et al., 2012; Faruqui et al., 2010; Balta-Ozkan et al., 2014; Paetz et al., 2011; Park et al., 2018; Park et al., 2018; Steele et al., 2009; Ehrenhard et al., 2014; Kun, 2001                  | 16 |

### Result: Framework

Conceptual framework for factors affecting consumer's new technology acceptance



## Research Gap

### Research Gap

|   | Research Gap Themes                          |                                                                                                                                                                                                | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|---|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 | User centric research of smart home products | <ul> <li>User Perception of smart home technology</li> <li>Demographics and geographic change</li> <li>Smart home technology benefits for users</li> <li>Focus on ageing population</li> </ul> | Chan et al., 2008; Coughlan et al., 2013; Chan et al., 2009; Amiribesheli et al.,2015; Kim et al., 2013; Demiris & Hensel, 2008; Alam et al., 2012; Peek et al., 2014; Czaja, 2016; Balta-Ozkan et al., 2013a; Diegel et al., 2005; Bowes et al., 2012; Chen et al., 2017; Bhati et al., 2017; Balta-Ozkan et al., 2013b; Paetz et al., 2011; Demiris et al., 2008; Brandt et al., 2011; Stringer etal.,2006; Wu & Fu, 2012; Chan et al., 2012; Chiang & Wang, 2016; Matlabi et al., 2012; Paetz et al., 2012; Demiris et al., 2004; Gaul & Ziefle, 2009; Courtney et al., 2008; Yamazaki, 2006; Hong et al., 2016; Vilas et al., 2010 | 30 |
| 2 | Smart home acceptance and adoption           | <ul> <li>Price</li> <li>Cost of installation</li> <li>Cost of repair and maintenance</li> <li>Concern about the misuse of private data</li> </ul>                                              | Chan et al., 2008; Dawid et al., 2017; Khedekar et al., 2017; Chan et al., 2009; Peetoom et al., 2015; Kim et al., 2013; Peek et al., 2014; Balta-Ozkan et al., 2013a; Diegel et al., 2005; Ehrenhard et al., 2014; Bowes et al., 2012; Balta-Ozkan et al., 2013b; Kleinberger et al., 2007; Demiris et al., 2008; Park et al., 2018; Yang et al., 2017; Alsulami & Atkins, 2016; Steele et al., 2009; Mayer et al., 2011; Paetz et al., 2012; Gaul & Ziefle, 2009; Courtney et al., 2008; Mani & Chouk, 2017; Chung et al., 2016                                                                                                      | 24 |

Ganvir, L., & Kalita, C. P. Archives of Design Research, 2022

## New Technology Acceptance Theoretical Models

- 1. Theory of Reasoned Action (TRA)
- 2. Theory of Planned Behaviour (TPB)
- 3. Unified Theory of Acceptance and Use of Technology (UTAUT)
- 4. Technology Acceptance Model (TAM)
- 5. Norm Activation Model (NAM)
- 6. Value-based adoption model (VAM)
- 7. Technology Reediness Index (TRI)
- 8. Innovation Diffusion Theory (IDT)
- 9. Perceived Risk Theory (PRT)
- 10. Cognitive Dissonance Theory (CDT)
- 11.PAD Theory

#### Research Methodology

• The Kano model explains the relationship between the degree of sufficiency and **customer satisfaction/dissatisfaction** with respect to an characteristics of customer requirement.



#### Classification

#### The customer requirements can be classified into six categories:

- Attractive
- One-dimensional

| <ul> <li>Must be</li> </ul>      | Potential for          | (Attractive + One Dimensional ) x 100                            |
|----------------------------------|------------------------|------------------------------------------------------------------|
| <ul> <li>Indifferent</li> </ul>  | satisfaction           | - Attractive + One Dimensional + Must be + Reverse + Indifferent |
| • Reverse                        |                        | 7.00 D. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                     |
| <ul> <li>Questionable</li> </ul> | Potential for customer | = (One Dimensional + Must be + Reverse) x 100                    |

dissatisfaction

Attractive + One Dimensional + Must be + Reverse + Indifferent

#### Sampling

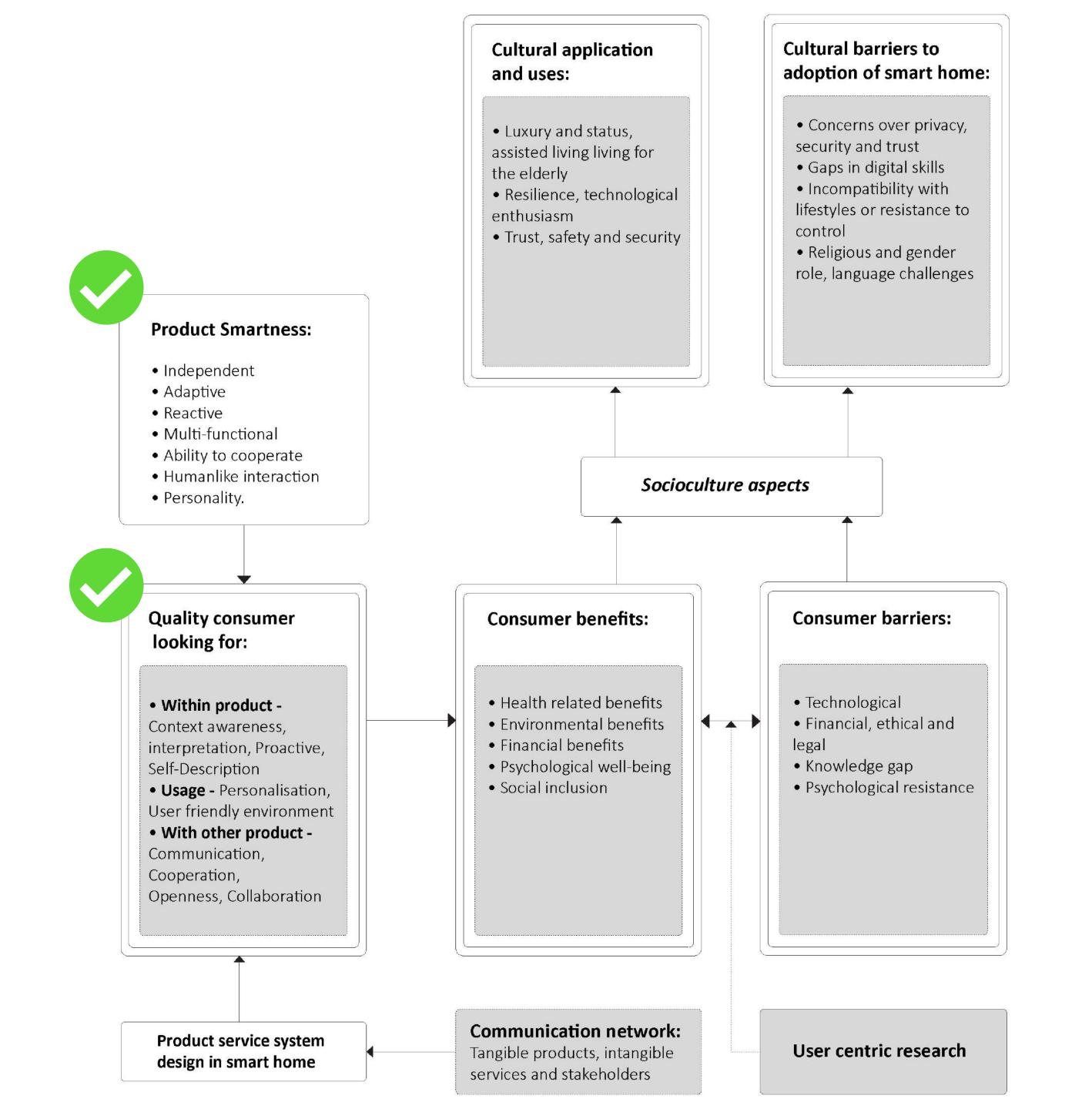
- Purposive sampling is a sampling technique in which participants are selected based on specific criteria or characteristics that are relevant to the research objective.
- In the context of using the Kano Model for participant selection, purposive sampling can be employed to ensure that individuals who have knowledge and experience related to the smart home products and services (SH-PSS) being evaluated are included in the study.

#### **Purposive Sampling**

- **Define the target population:** Determine the specific group of individuals who possess the relevant knowledge and experience regarding SH-PSS.
- **Determine the criteria:** Identify the specific criteria or characteristics that participants must meet to be considered eligible for the study. These criteria should align with the research objective and the expertise required to evaluate the characteristics of the SH-PSS.
- Select participants: Using the defined criteria, purposefully select individuals who meet the criteria and have the necessary knowledge and experience. This could involve reaching out to experts in the field, professionals working in the smart home industry, or individuals who have extensive experience with using SH-PSS.
- Sample size determination: Decide on the appropriate sample size based on the resources available and the depth of analysis
  required. The sample size should be sufficient to capture diverse perspectives and provide meaningful insights into the
  characteristics being evaluated.
- **Data collection:** Conduct interviews, surveys, or other data collection methods to gather participants' opinions and feedback on the characteristics of the SH-PSS. Utilize the Kano Model questionnaire or other suitable tools to assess participant satisfaction and dissatisfaction with the characteristics.
- Data analysis: Analyse the collected data using appropriate statistical techniques, such as calculating satisfaction and dissatisfaction coefficients, to categorize the characteristics into different Kano Model categories.

## Kano Survey Five Point Likert Scale

N = 226

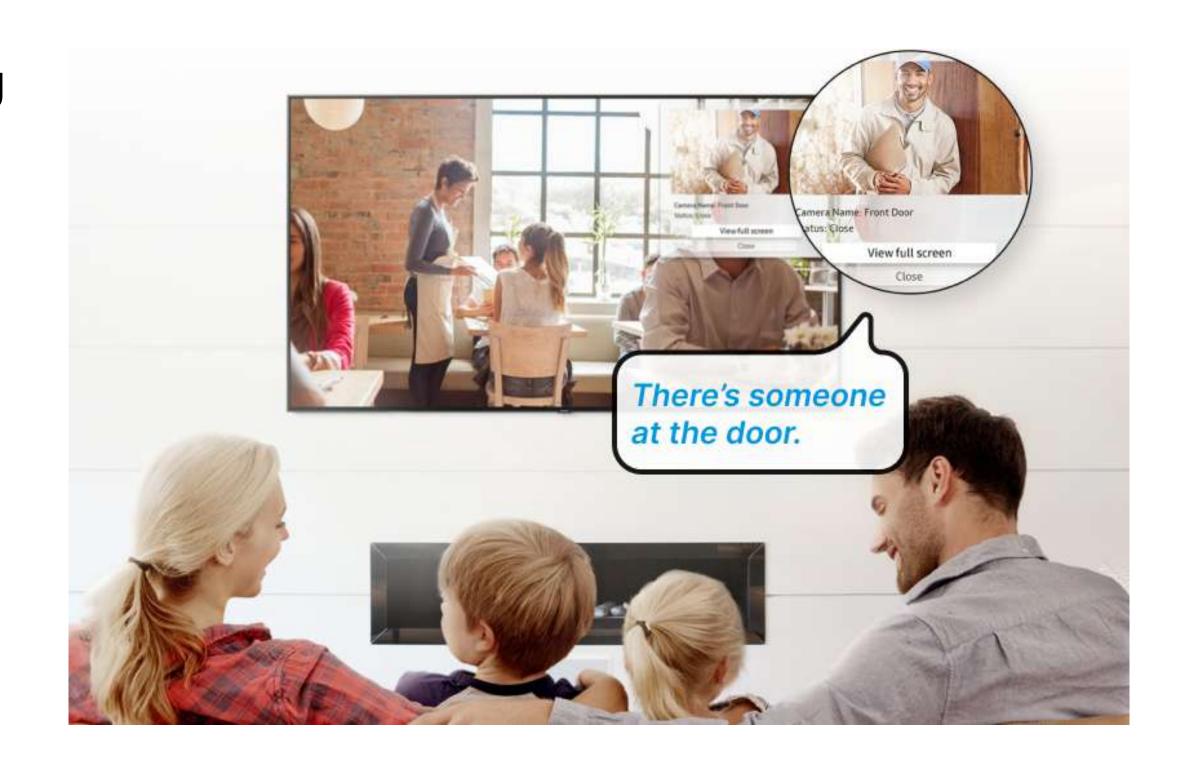

Male 63% Female 37%

27% (n=61) of the respondents were above 40 years old

Five-point Likert scale

Choice of answer:

- 1) Like (I like it this way);
- 2) Must (I expect it this way);
- 3) Neutral (I am neutral);
- 4) Can live with it (I can live with it this way);
- 5) Dislike (I don't like it this way)




## Kano Questionnaire

#### C.9.2: Multi-functional (2 Examples)

C.9.2: SH-PSS television giving updates of surrounding and who is on door apart from their main purpose

- Functional Question
- Dysfunctional Question



**Example 13.1:** SH-PSS are aware about their surrounding; e.g.: smart home door welcomes the owner and alerts when it detects unauthorized entry.

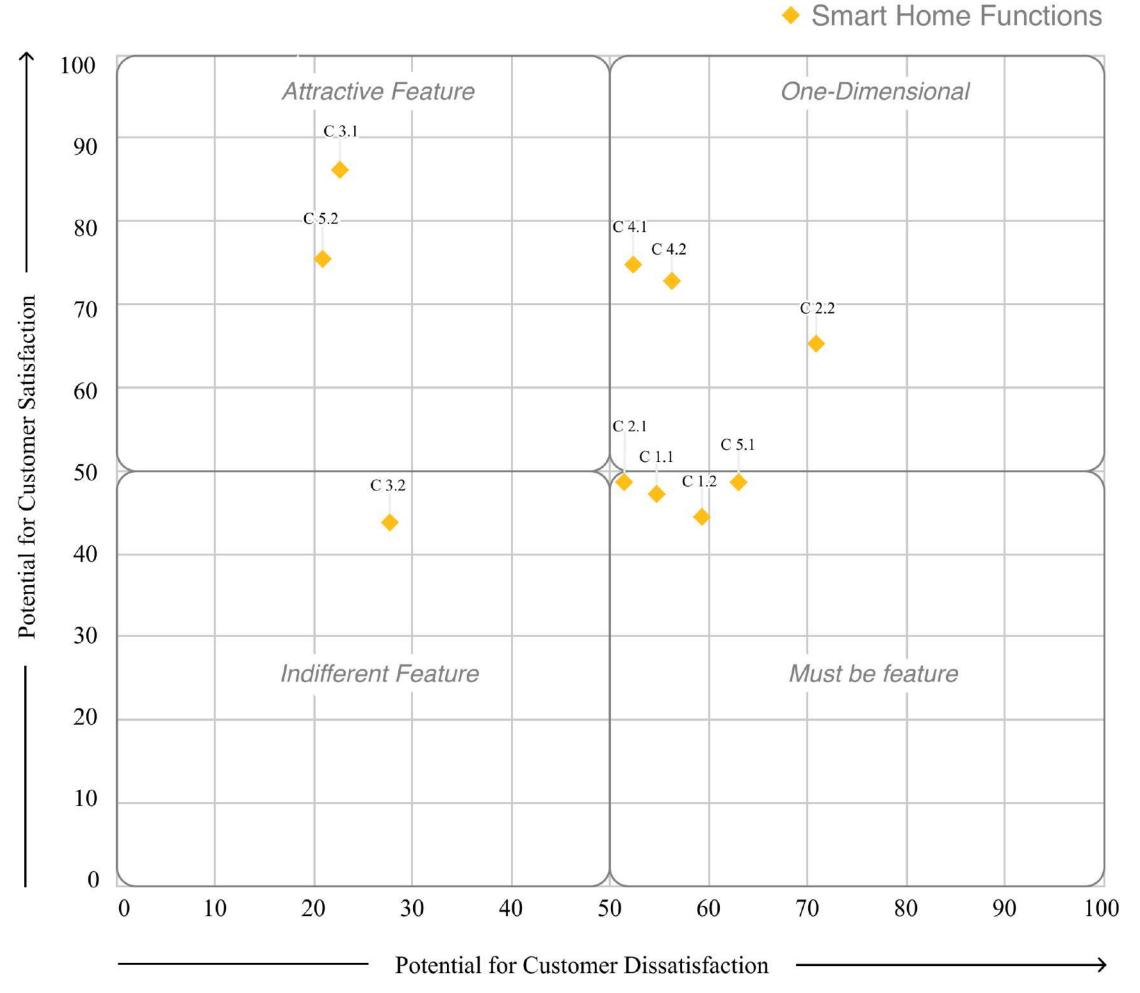


Functional Question: If smart products are aware about their surroundings like shown above, how would you feel?

**Dysfunctional Question:** If smart products are not aware about their surroundings like shown above, how would you feel?

**Example 13.2:** SH-PSS automatically perform a function based on their surroundings; e.g.: garage door opens up when it detects car coming.




Functional Question: If smart products automatically perform a function based on their surroundings like shown above, how would you feel?

**Dysfunctional Question:** If smart products do not automatically perform a function based on their surroundings like shown above, how would you feel?

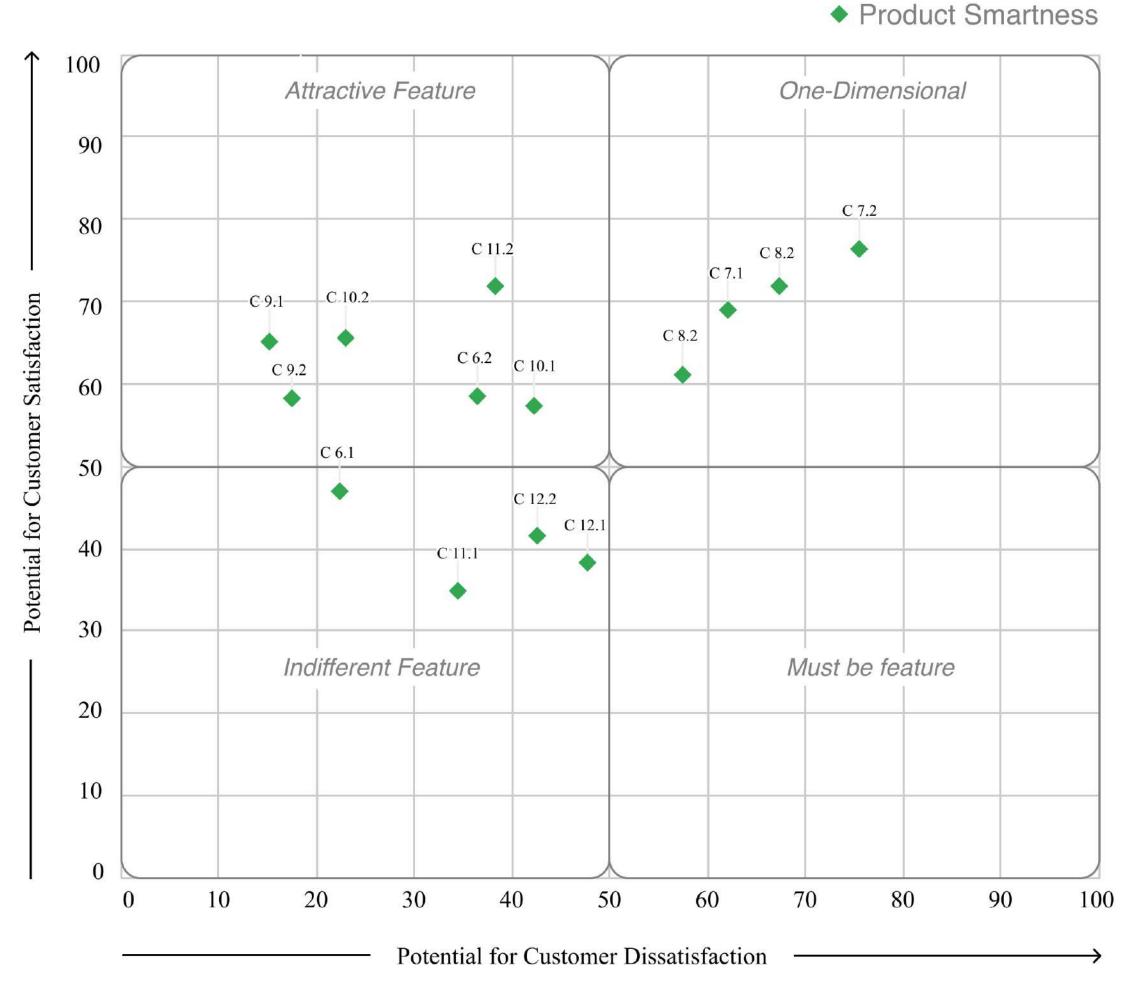
| Characteristics a   | and its ca | itegory  |          | x-axis   | y-axis | Result |                 |
|---------------------|------------|----------|----------|----------|--------|--------|-----------------|
| C.1: Comfort        | C.1.1:     | A=34.51% | M=38.05% | O=10.18% | 47.20  | 54.67  | Must Be         |
|                     |            | I=8.41%  | R=3.54%  | Q=5.31%  |        |        |                 |
|                     | C.1.2:     | A=31.42% | M=42.48% | O=11.06% | 44.44  | 59.26  | Must Be         |
|                     |            | I=7.52%  | R=3.10%  | Q=4.42%  |        |        |                 |
| C.2: Monitor        | C.2.1:     | A=36.28% | M=36.28% | O=10.18% | 48.62  | 51.37  | Must Be         |
|                     |            | I=10.62% | R=3.10%  | Q=3.54%  |        |        |                 |
|                     | C.2.2:     | A=22.12% | M=24.78% | O=40.27% | 65.27  | 70.83  | One Dimensional |
|                     |            | I=5.75%  | R=2.65%  | Q=4.42%  |        |        |                 |
| C.3: Health therapy | C.3.1:     | A=56.64% | M=4.87%  | O=15.93% | 86.17  | 22.58  | Attractive      |
|                     |            | I=17.70% | R=0.88%  | Q=3.98%  |        |        |                 |
|                     | C.3.2:     | A=30.09% | M=11.06% | O=11.95% | 43.77  | 27.65  | Indifferent     |
|                     |            | I=39.38% | R=3.54%  | Q=3.98%  |        |        |                 |
| C.4: Support        | C.4.1:     | A=38.05% | M=13.72% | O=34.07% | 74.77  | 52.29  | One Dimensional |
|                     |            | I=7.96%  | R=2.65%  | Q=3.54%  |        |        |                 |
|                     | C.4.2:     | A=37.61% | M=19.03% | O=32.30% | 72.81  | 56.22  | One Dimensional |
|                     |            | I=4.42%  | R=2.65%  | Q=3.98%  |        |        |                 |
| C.5: Consultancy    | C.5.1:     | A=27.43% | M=37.61% | O=19.03% | 48.61  | 62.96  | Must Be         |
|                     |            | I=7.96%  | R=3.54%  | Q=4.42%  |        |        |                 |
|                     | C.5.2:     | A=65.04% | M=10.18% | O=7.08%  | 75.46  | 20.83  | Attractive      |
|                     |            | I=10.62% | R=2.65%  | Q=4.42%  |        |        |                 |

### **Smart Home Functions**

### Kano Model Graph



#### Attractive:


C3.1: Health therapy

C5.2: Consultancy

| Characteristics and   | its category |          |          |          | x-axis | y-axis | Result          |
|-----------------------|--------------|----------|----------|----------|--------|--------|-----------------|
| C.6: Independent      | C.6.1:       | A=36.28% | M=10.62% | O=8.41%  | 46.97  | 22.32  | Indifferent     |
|                       |              | I=37.61% | R=2.21%  | Q=4.87%  |        |        |                 |
|                       | C.6.2:       | A=43.36% | M=19.47% | O=12.83% | 58.52  | 36.40  | Attractive      |
|                       |              | I=17.70% | R=2.65%  | Q=3.98%  |        |        |                 |
| C.7: Adaptive         | C.7.1:       | A=26.99% | M=19.47% | O=38.94% | 68.98  | 62.03  | One Dimensional |
|                       |              | I=9.29%  | R=0.88%  | Q=4.42%  |        |        |                 |
|                       | C.7.2:       | A=16.37% | M=12.39% | O=56.64% | 76.38  | 75.46  | One Dimensional |
|                       |              | I=7.08%  | R=3.10%  | Q=4.42%  |        |        |                 |
| C.8: Reactive         | C.8.1:       | A=30.53% | M=23.01% | O=38.50% | 71.88  | 67.28  | One Dimensional |
|                       |              | I=0.88%  | R=3.10%  | Q=3.98%  |        |        |                 |
|                       | C.8.2:       | A=27.43% | M=20.35% | O=30.97% | 61.11  | 57.40  | One Dimensional |
|                       |              | I=13.27% | R=3.54%  | Q=4.42%  |        |        |                 |
| C.9: Multi-functional | C.9.1:       | A=55.31% | M=6.19%  | O=7.52%  | 65.13  | 15.13  | Attractive      |
|                       |              | I=26.55% | R=0.88%  | Q=3.54%  |        |        |                 |
|                       | C.9.2:       | A=49.56% | M=9.73%  | O=6.19%  | 58.25  | 17.43  | Attractive      |
|                       |              | I=30.09% | R=0.88%  | Q=3.54%  |        |        |                 |
| C.10:                 | C.10.1:      | A=38.05% | M=20.35% | O=17.26% | 57.33  | 42.20  | Attractive      |
| Ability to co-operate |              | I=17.70% | R=3.10%  | Q=3.54%  |        |        |                 |
|                       | C.10.2:      | A=51.77% | M=8.41%  | O=11.50% | 65.59  | 22.93  | Attractive      |
|                       |              | I=22.57% | R=2.21%  | Q=3.54%  |        |        |                 |
| C.11:                 | C.11.1:      | A=22.57% | M=19.47% | O=10.62% | 34.88  | 34.41  | Indifferent     |
| Humanlike Interaction |              | I=39.82% | R=2.65%  | Q=4.87%  |        |        |                 |
|                       | C.11.2:      | A=51.77% | M=15.93% | O=17.26% | 71.88  | 38.24  | Attractive      |
|                       |              | I=7.52%  | R=3.54%  | Q=3.98%  |        |        |                 |
| C.12: Personality     | C.12.1:      | A=30.09% | M=16.37% | O=6.19%  | 38.31  | 47.66  | Indifferent     |
|                       |              | I=19.47% | R=22.57% | Q=5.31%  |        |        |                 |
|                       | C.12.2:      | A=27.43% | M=8.41%  | O=11.95% | 41.58  | 42.52  | Indifferent     |
|                       |              | I=26.99% | R=19.91% | Q=5.31%  |        |        |                 |

### **Product Smartness**

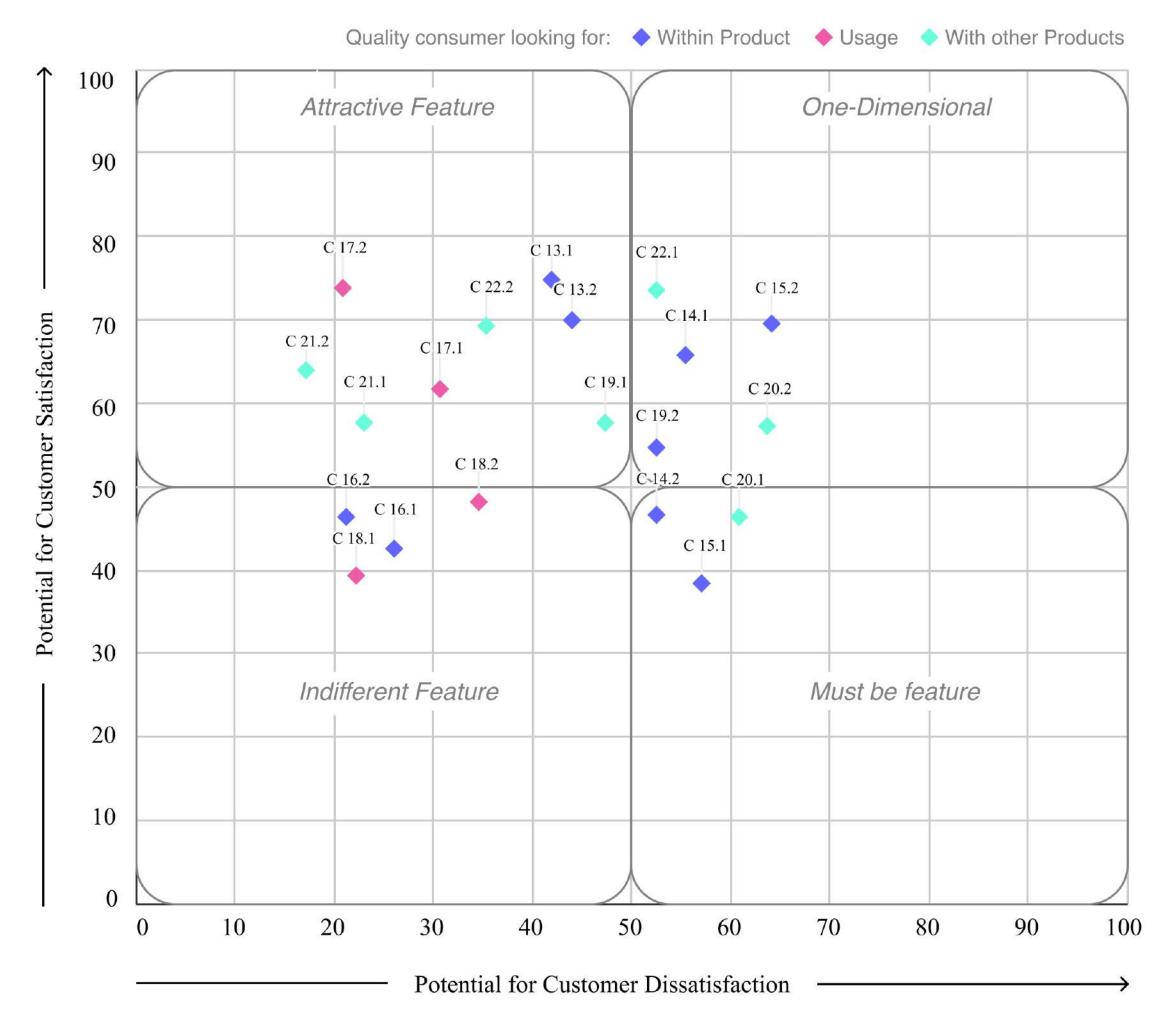
### Kano Model Graph



#### Attractive:

**C6.2: Independent** 

C9.1, C9.2: Multi-functional


C10.1, C10.2: Ability to Co-operate

C11.2: Humanlike interaction

| Characteristics and its catego | ory     |          |          |                     | x-axis   | y-axis      | Result                                  |
|--------------------------------|---------|----------|----------|---------------------|----------|-------------|-----------------------------------------|
| C.13: Context Awareness        | C.13.1: | A=42.78% | M=9.79%  | O=33.51%            | 77.49    | 47.12       | Attractive                              |
|                                |         | I=9.28%  | R=3.09%  | Q=1.55%             |          |             |                                         |
|                                | C.13.2: | A=36.08% | M=9.28%  | O=32.47%            | 70.37    | 44.44       | Attractive                              |
|                                |         | I=18.04% | R=1.55%  | Q=2.58%             |          |             |                                         |
| C.14: Interpretation           | C.14.1: | A=27.84% | M=14.95% | O=36.60%            | 66.49    | 55.85       | One Dimensional                         |
| ·                              |         | I=14.95% | R=2.58%  | Q=3.09%             |          |             |                                         |
|                                | C.14.2: | A=31.96% | M=35.05% | O=13.40%            | 46.81    | 52.66       | Indifferent                             |
|                                |         | I=13.92% | R=2.58%  | Q=3.09%             |          |             |                                         |
| C.15:                          | C.15.1: | A=23.71% | M=39.69% | O=13.92%            | 38.62    | 57.14       | Indifferent                             |
|                                |         | I=18.04% | R=2.06%  | Q=2.58%             |          |             |                                         |
|                                | C.15.2: | A=27.32% | M=18.56% | O=40.21%            | 69.68    | 64.36       | One Dimensional                         |
|                                |         | I=7.22%  | R=3.61%  | Q=3.09%             |          |             |                                         |
| C.16: Self-description         | C.16.1: | A=35.05% | M=9.28%  | O=10.82%            | 46.84    | 21.58       | Indifferent                             |
| 1                              |         | I=41.75% | R=1.03%  | Q=2.06%             |          |             |                                         |
|                                | C.16.2: | A=32.99% | M=12.89% | O=9.28%             | 42.49    | 2.49 26.18  | Indifferent                             |
|                                |         | I=39.69% | R=3.61%  | Q=1.55%             |          |             |                                         |
| C.17: Personalization          | C.17.1: | A=44.85% | M=11.86% | O=15.98%            | 62.11    | 31.05       | Attractive                              |
|                                |         | I=22.68% | R=2.58%  | Q=2.06%             |          |             |                                         |
|                                | C.17.2: | A=58.25% | M=5.67%  | O=13.92%            | 74.07    | 21.16       | Attractive                              |
|                                |         | I=18.56% | R=1.03%  | Q=2.58%             |          |             | 711111111111111111111111111111111111111 |
| C.18: User friendly            | C.18.1: | A=26.29% | M=6.70%  | O=12.37%            | 39.68    | 22.22       | Indifferent                             |
|                                |         | I=49.48% | R=2.58%  | Q=2.58%             |          |             |                                         |
|                                | C.18.2: | A=32.47% | M=15.98% | O=14.43%            | 48.40    | 34.57       | Indifferent                             |
| nteraction                     | 3113121 | I=30.93% | R=3.09%  | Q=3.09%             |          |             | in amoralic                             |
| C.19: Communication            | C.19.1: | A=36.60% | M=22.68% | O=20.10%            | 57.89    | 47.37       | Attractive                              |
|                                | 3113111 | I=14.95% | R=3.61%  | Q=2.06%             |          |             | Attidotivo                              |
|                                | C.19.2: | A=35.57% | M=27.32% | O=18.56%            | 54 97    | 54.97 52.88 | One Dimensional                         |
|                                | 0.10.2. | I=10.82% | R=6.19%  | Q=1.58%             | 01.07    |             |                                         |
| C.20: Co-operation             | C.20.1: | A=31.96% | M=40.21% | O=13.92%            | 46.84    | 61.05       | Must-Be                                 |
|                                | 0.20.1. | I=6.19%  | R=5.67%  | Q=2.06%             |          | 01.00       | IVIGST DC                               |
|                                | C.20.2: | A=23.20% | M=24.74% | O=32.47%            | 57.45    | 63 83       | One Dimensional                         |
|                                | 0.20.2. | I=11.86% | R=4.64%  | Q=3.09%             |          | 37.43       |                                         |
| C.21: Openness                 | C.21.1: | A=44.85% | M=8.76%  | O=11.86%            | 57.89    | 22 16       | Attractive                              |
|                                | 0.21.1. | I=30.41% | R=2.06%  | Q=2.06%             |          | 20.10       | Attiactive                              |
|                                | C.21.2: | A=55.15% | M=8.25%  | O=7.73%             | 64.21    | 17 27       | Attractive                              |
|                                | 0.21.2. | I=25.77% | R=1.03%  | Q=2.06%             | <u> </u> | 17.37       | Attiactive                              |
| C.22: Collaboration            | C.22.1: | A=34.02% | M=1.03%  | Q=2.00%<br>O=38.66% | 73.82    | 52 90       | One Dimensional                         |
| J.ZZ. OUIIADUIALIUII           | 0.22.1. |          |          |                     | / 3.02   | 52.00       |                                         |
|                                | C 22 2: | I=12.37% | R=2.06%  | Q=1.55%             | 60.21    | 9E 1E       | Attroctive                              |
|                                | C.22.2: | A=46.91% | M=12.37% | O=20.62%            | 69.31    | 33.43       | Attractive                              |
|                                |         | I=15.98% | R=1.55%  | Q=2.58%             |          |             |                                         |

## Quality Consumer Looking For

### Kano Graph



#### Attractive:

C13.1, C13.2: Context Awareness

C17.1, C17.2: Personalisation

C19.1: Communication

C21.1, C21.2: Openness

C22.1: Collaboration

## Conclusion: Kano Results

#### **Attractive**

|                | Characteristics       |
|----------------|-----------------------|
| C.3.1          | Health Therapy        |
| C.5.2          | Consultancy           |
| C.6.2          | Independent           |
| C.9.1; C.9.2   | Multi-functional      |
| C.10.1; C.10.2 | Ability to cooperate  |
| C.11.2         | Humanlike Interaction |
| C.13.1; C.13.2 | Context Awareness     |
| C.17.1; C.17.2 | Personalisation       |
| C.19.1         | Communication         |
| C.21.1; C.21.2 | Co-operation          |
| C.22.2         | Collaboration         |

## Conclusion: Kano Results Must Be

|              | Characteristics |
|--------------|-----------------|
| C.1.1, C.1.2 | Comfort         |
| C.2.1        | Monitor         |
| C.5.1        | Consultancy     |
| C.14.2       | Interpretation  |
| C.15.1       | Proactive       |
| C.20.1       | Co-operation    |

## Conclusion: Kano Results

#### **One Dimensional**

|              | Characteristics |
|--------------|-----------------|
| C.2.2        | Monitor         |
| C.4.1; C.4.2 | Support         |
| C.7.1; C.7.2 | Adaptive        |
| C.8.1; C.8.2 | Reactive        |
| C.14.1       | Interpretation  |
| C.15.2       | Proactive       |
| C.19.2       | Communication   |
| C.20.2       | Co-operation    |
| C.22.1       | Collaboration   |

## Conclusion: Kano Results

#### Indifferent

|                | Characteristics           |
|----------------|---------------------------|
| C.3.2          | Health Therapy            |
| C.6.1          | Independent               |
| C.11.1         | Humanlike Interaction     |
| C.12.1; C.12.2 | Personality               |
| C.16.1; C.16.2 | Self-description          |
| C.18.1; C.18.2 | User Friendly Interaction |

## Smart-Home Product-Service-System Design Definition

"SH-PSS is an IT-driven value co-creation business strategy consisting of various stakeholders as the players and residents, smart systems as the infrastructure and home, smart and connected products as the media and tools, and their generated e-services as the key values delivered that continuously strives to meet individual consumer needs sustainably within the context of residence."

## Design of SH-PSS Literature Review

Ganvir, L., & Kalita, C. P. International Symposium on Industrial Engineering and Automation. University of Bozen-Bolzano., 2023

Online electronic search via Google Scholar, Scopus and Web of Science

Offline hand search from hard copies of projects, reports, newsletter, books

Web portals to gather information of smart home product service system

Identification:

keywords: 'Smart home product', 'Smart home service', 'Smart product service system', 'User experience', and 'User Centric Design',

with limitations to studies conducted by both theoretical and empirical research in design, technology, consumer research, psychology, cognitive science and philosophy.

Collection and compilation of important and relevant literature (Initial Search: 157 articles

#### **Inclusion Criteria:**

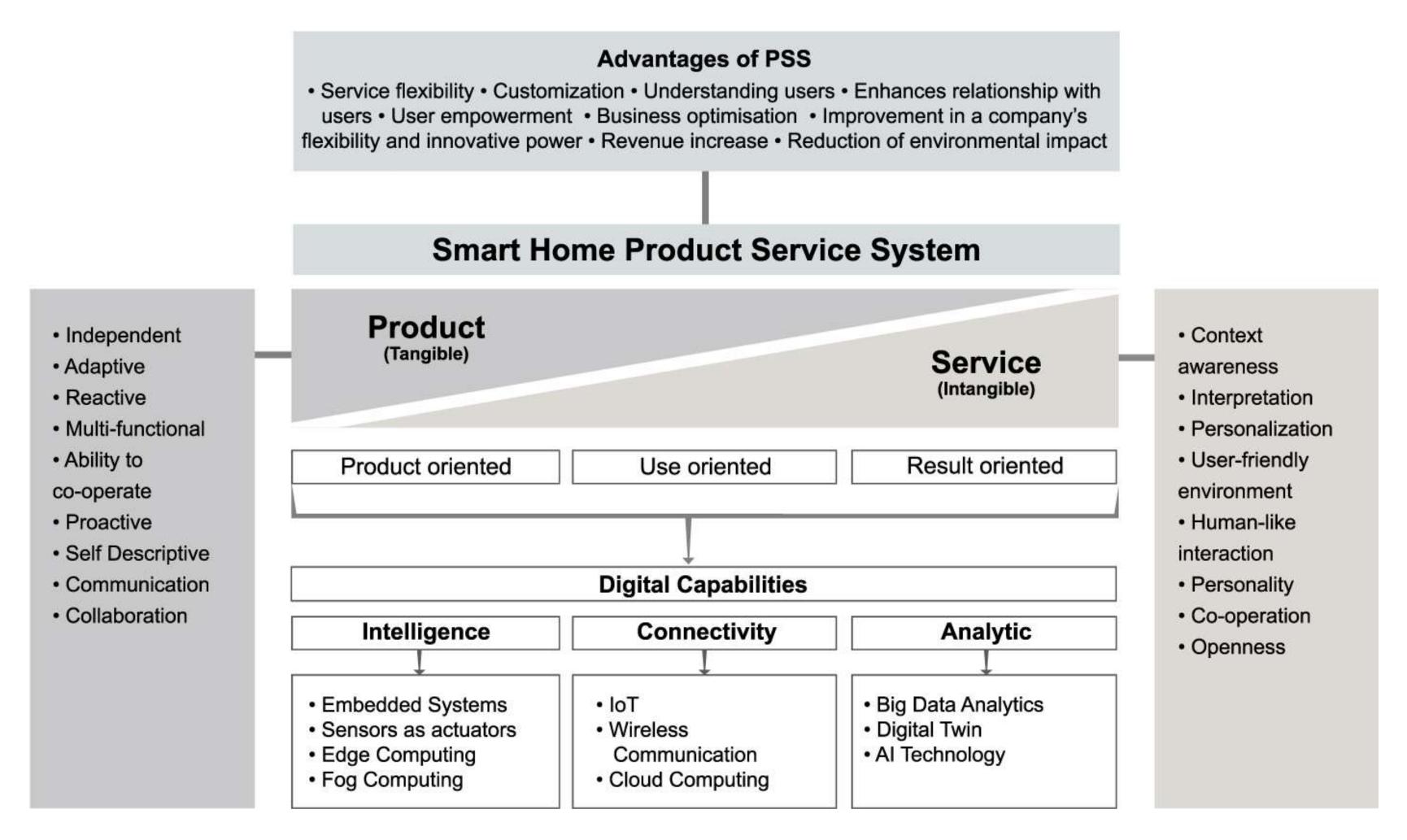
- English language only in the timeframe of 2015 to 2022
- The presence of the search term in keywords or title
   Full text availability
- Originality and relevancy

#### **Exclusion Criteria:**

- Language other then English
- Only abstract availability
- Studies not focused on the area of interest (i.e smart homes, product service system design)
- Research-in-progress articles

#### Articles selected for present study: 40

- Systematic technique of indexing and classifying research articles. Notes were gathered and tabulated for future reference and the process of thematic classification.
- Coding and thematic extraction techniques were carried out to identify and classify themes derived from the notes.
- Open code and axial code were identified as key themes and aspects that affected the user experience and execution of the smart home product service system.


ර Catergories Emerged

Through the assessment of selected articles and thematic analysis, three main categories emerged.

- 1. Smart home product service system (SH-PSS) and its characteristics
- 2. User centric design and user experience in SH-PSS
- 3. The current gaps and challenges in the design of SH-PSS

## SH-PSS Conceptual Framework

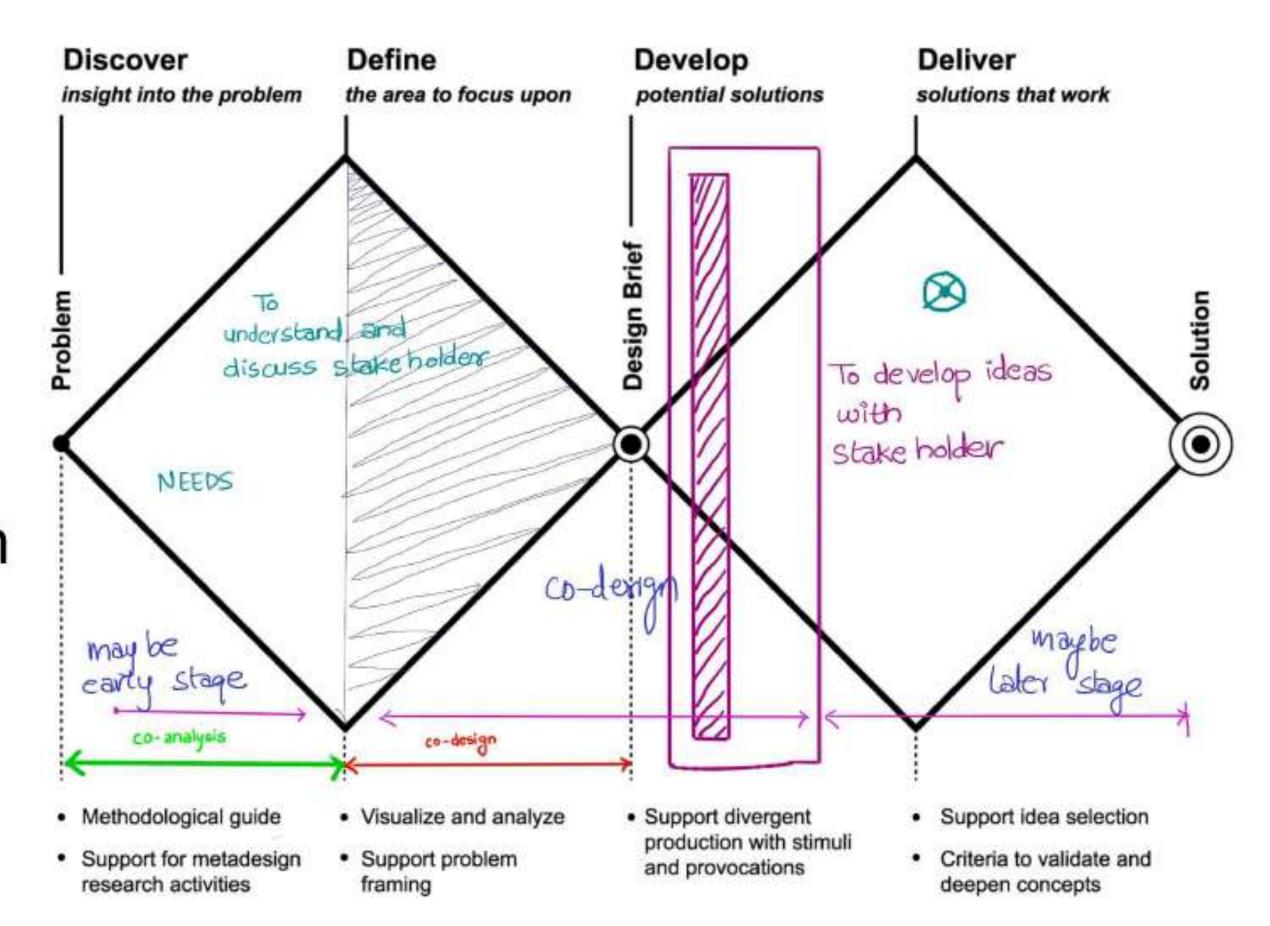
#### **Smart Home Product Service System**



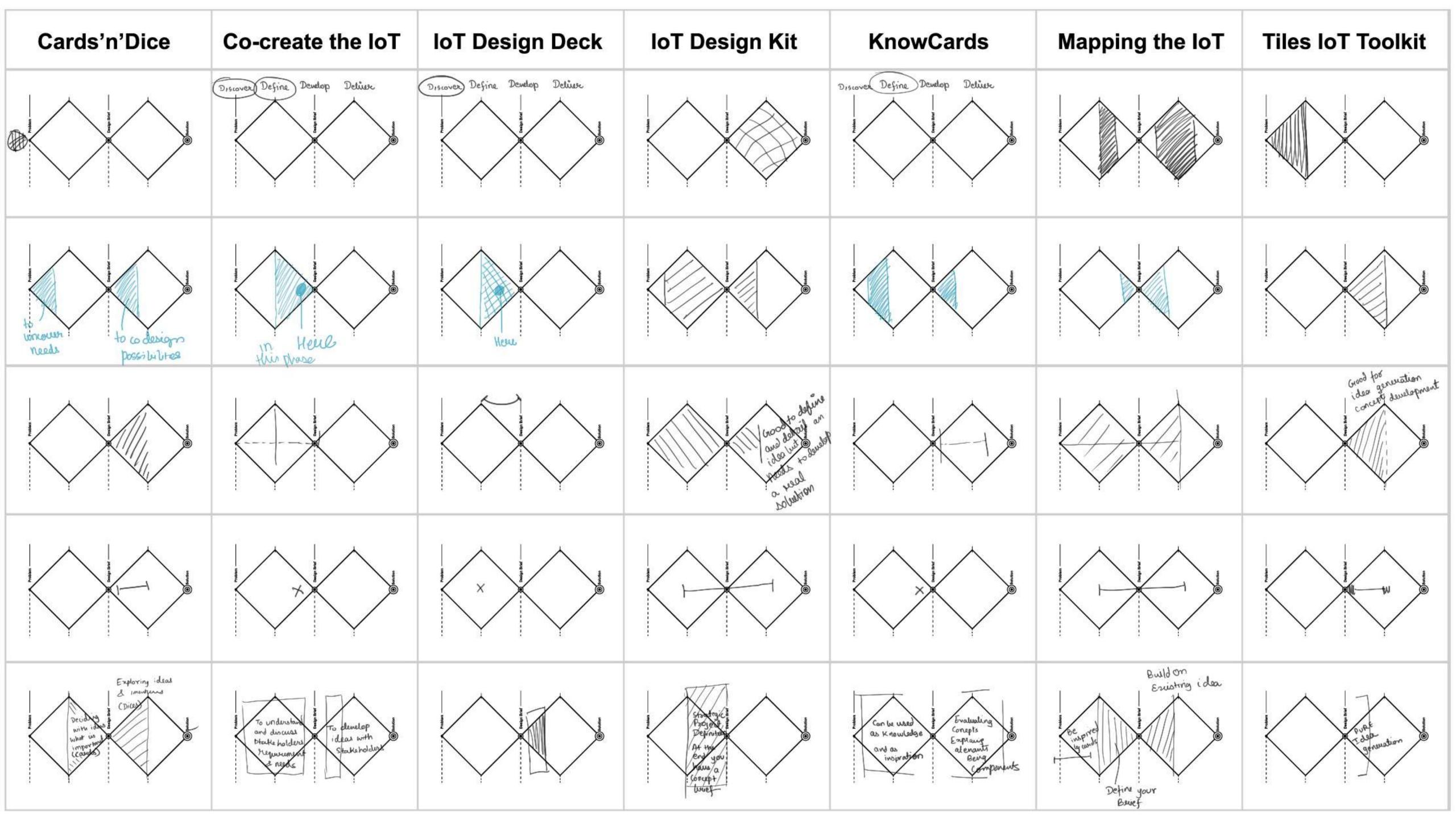
# User Centric Design in SH-PSS Research Gap

Smart Home Product-Service-System Lifecycle:

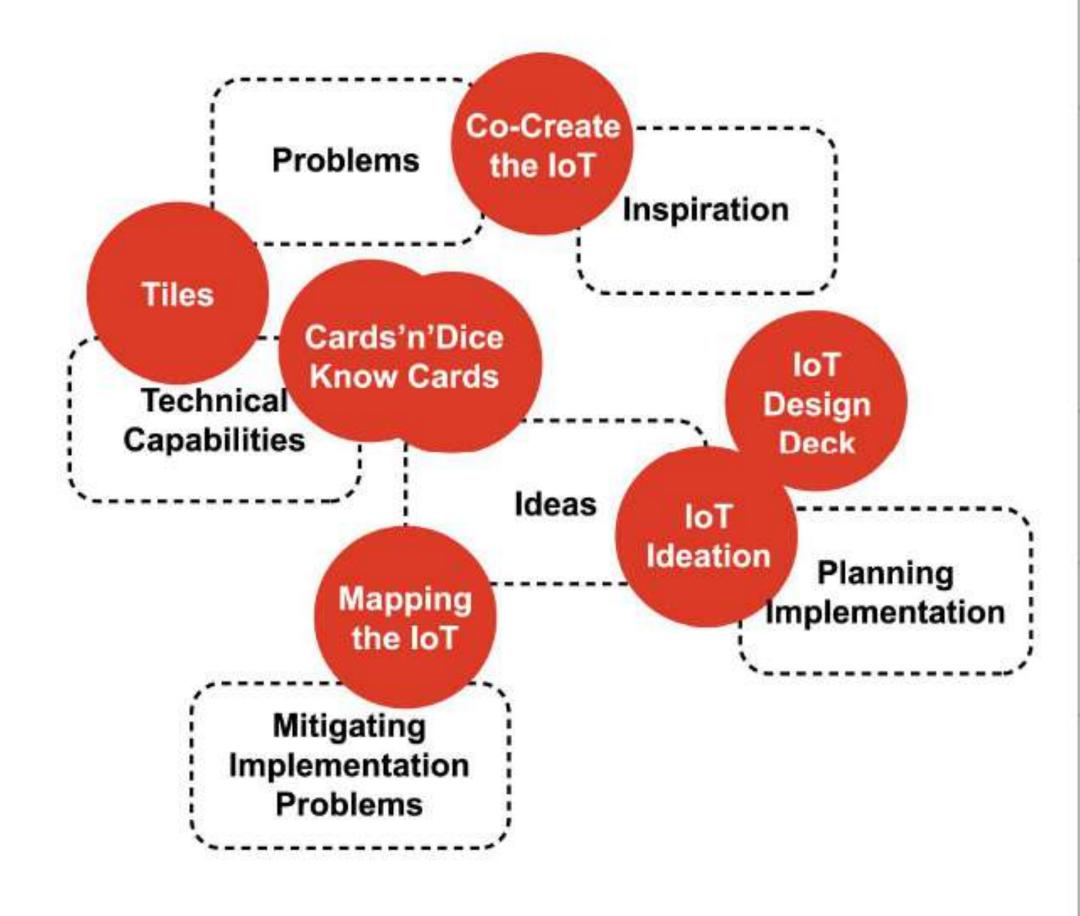
- Service-Dominant (S-D) Design
- Data-driven Value Co-creation
- Closed-loop design (SH-PSS Closed-loop design and co-creation roles)


Other contribution in paper: User-centered approaches and tools for SH-PSS.

# Design of Smart Home Product Service System Literature Review and Expert Interview


- Co-create the Internet of Things (IoT)
- IoT Design Deck
- IoT Design Kit
- KnowCards
- Mapping the IoT
- Tiles IoT Toolkit

#### Context

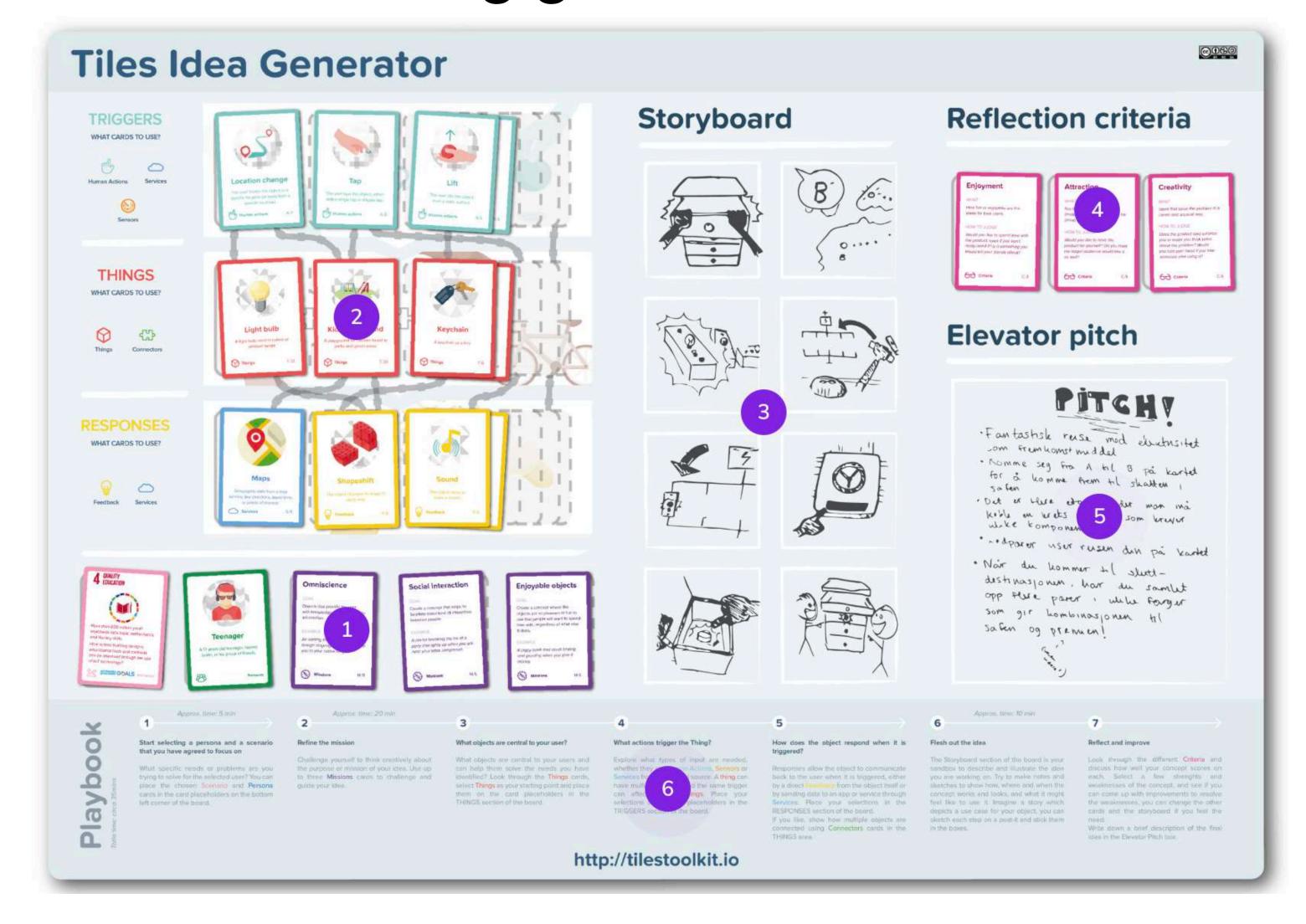

- Problems
- 2. Inspiration
- 3. Technical Capabilities
- Ideas
- Planning Implementation
- 6. Mitigating Implementation Problem



Ganvir, L., & Kalita, C. P. International Conference on Research into Design., 2023



### Discussions




Ganvir, L., & Kalita, C. P. International Conference on Research into Design., 2023

|   | Design Methods          | Context                                         |
|---|-------------------------|-------------------------------------------------|
| 1 | Card 'n' Dice           | Technical Capabilities     Ideas                |
| 2 | Co-create the IoT       | Problems     Inspiration                        |
| 3 | IoT Design Deck         | Ideas     Planning Implementation               |
| 4 | IoT Ideation Design Kit | Ideas     Planning Implementation               |
| 5 | Know Cards              | Technical Capabilities     Ideas                |
| 6 | Mapping the IoT         | Ideas     Mitigating     Implementation Problem |
| 7 | Tiles IoT Toolkit       | Problems     Technical Capabilities             |

## **SH-PSS Innovator Toolkit**

#### A card-based brainstorming game



# Physical tiles and cards

#### **Brainstorming Card**

- Domain cards (scenarios, persona) summarise the goals and the people who will be impacted by your invention.
- Technology cards (things, sensors, services, human action, feedback) provide simple descriptions of technology like: things, sensors, data and user interfaces.
- Mission cards spice up your mix by providing provocative design goals.
- Criteria cards help to reflect and converge towards meaningful ideas.

# Physical tiles and cards

#### **Tiles IoT Innovator Toolkit**











## Activities

#### Participants are asked to perform in the Tiles IoT Inventor Toolkit

- Start by selecting a Persona and a Scenario that you have agreed to focus on:
   What specific needs or problems are you trying to solve for the user selected?
   You can place the chosen Scenario and Persona cards in the card placeholders at the bottom left corner of the board
- Refine the Mission: Challenge yourself to think creatively about the purpose or mission of your idea. Use up to three Missions cards to challenge and guide your idea.
- What objects are central to your user? What objects are central to your users and how they can help solving the needs you have identified? Look through the Things cards, select a few of them as your starting point and place them on the card placeholders in the THINGS section of the board.

## Activities

#### Participants are asked to perform in the Tiles IoT Inventor Toolkit

- What actions trigger the Thing? Explore what types of input are needed, whether they are Human Actions, Sensors or Services from a connected source. A thing can have multiple triggers, and the same trigger can affect multiple things. Place your selections on the card placeholders in the TRIGGERS section of the board.
- How does the object respond when it is triggered? Responses allow the
  object to communicate back to the user when it is triggered, either by a direct
  Feedback from the object itself or by sending data to an app or service
  through Services. (RESPONSES section of the board)

### Activities

#### Participants are asked to perform in the Tiles IoT Inventor Toolkit

- Flesh out the idea: The Storyboard section of the board is your sandbox to describe and illustrate the idea you are working on. Try to make notes and sketches to show how, where and when the concept works and looks, and what it might feel like to use it. Imagine a story which depicts a use case for your object, you can sketch each step on a post-it and stick them in the boxes.
- Reflect and improve: Look through different Criteria and discuss how well your concept scores on each. Select a few strengths and weaknesses of the concept, and see if you can come up with improvements to resolve the weaknesses, you can change the other cards and the storyboard if you feel the need. Write down a brief description of the final idea in the Elevator Pitch box.

# SH-PSS Reflection Criteria Cards

Ganvir, L., & Kalita, C. P. International Conference on Engineering & Product Design Education., 2023

































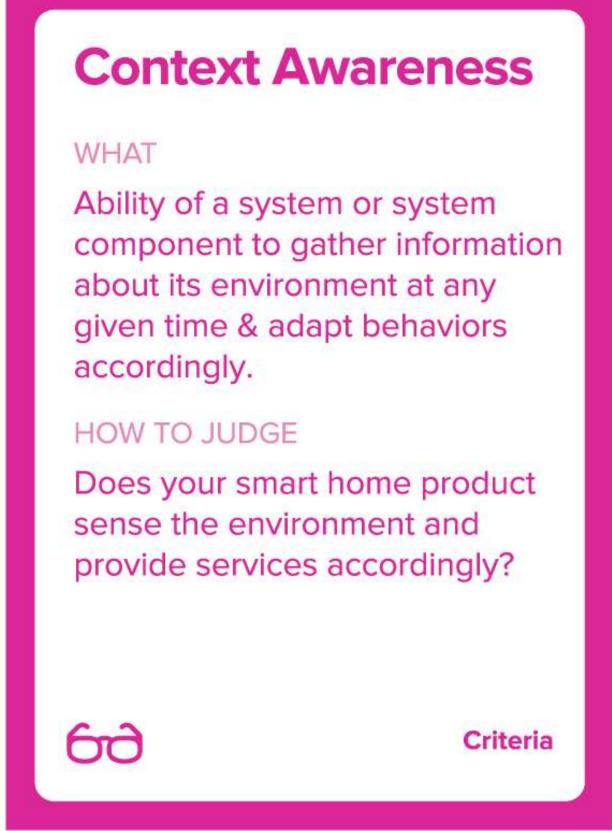








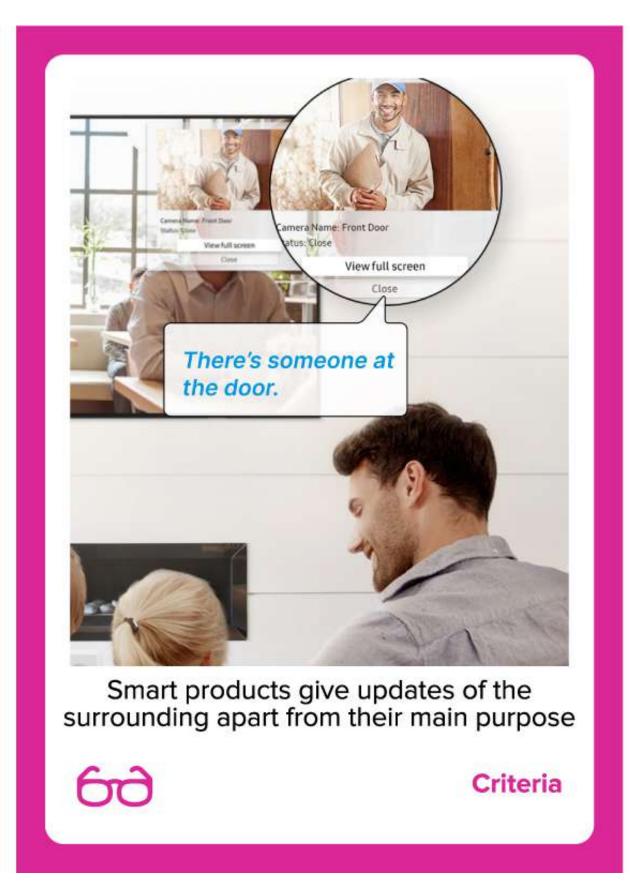


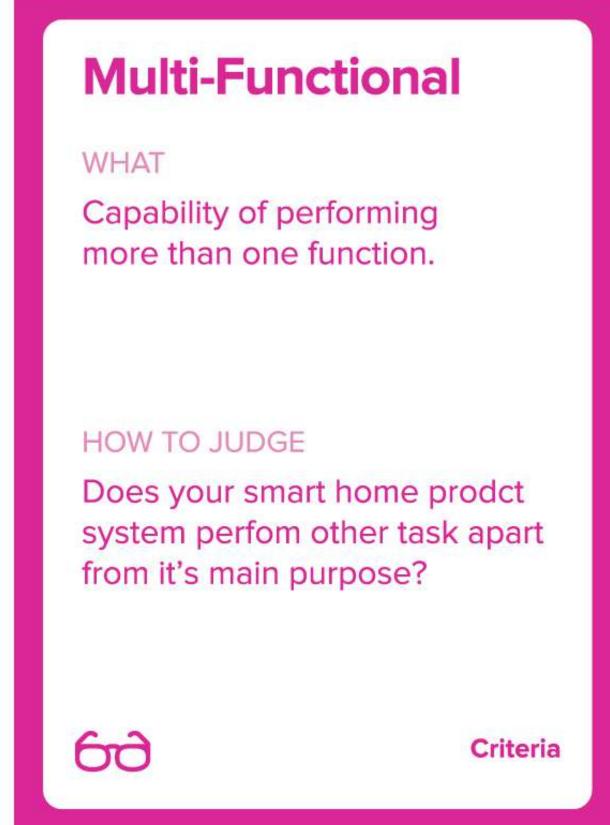


the transparency of action. HOW TO JUDGE Is your smart home product able detect and connect with other SH-PSS? Would your other smart products be able to perform task by a single command. 60

# **Context Awareness**SH-PSS Reflection Criteria Cards

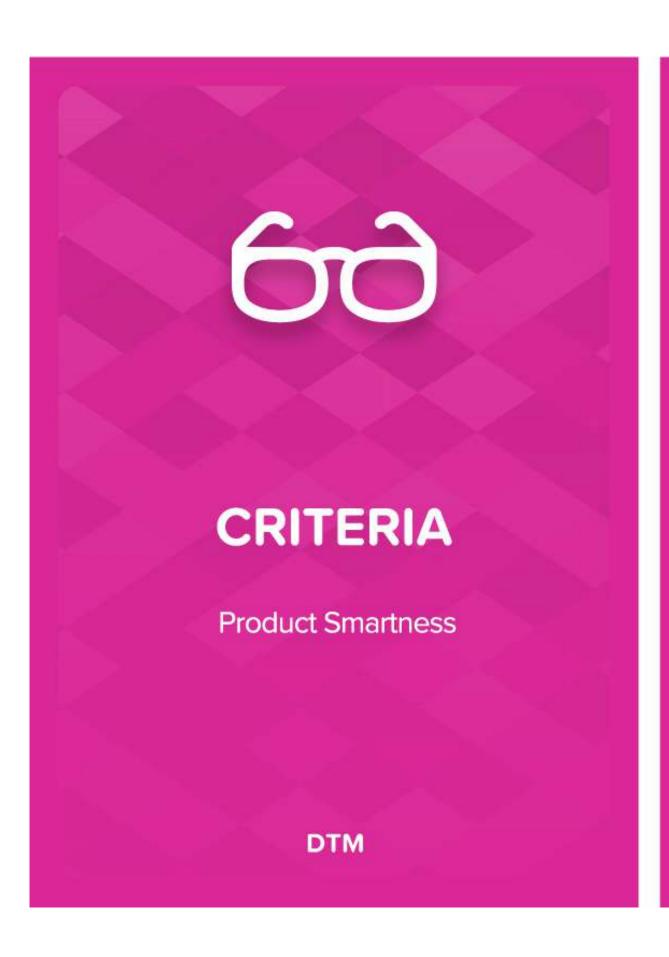




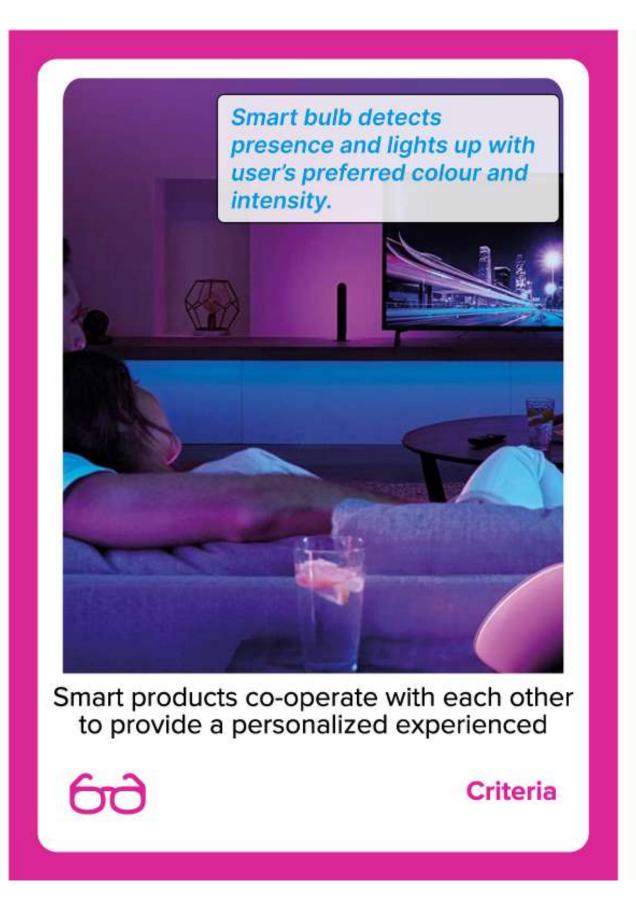



# **Multi-functional**SH-PSS Reflection Criteria Cards





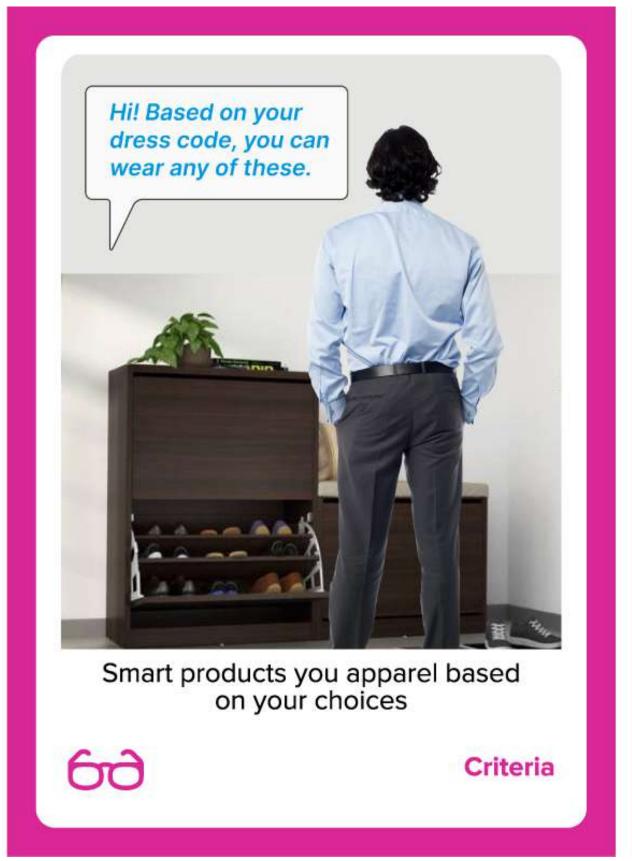






# **Ability to co-operate**SH-PSS Reflection Criteria Cards










# **Personalisation**SH-PSS Reflection Criteria Cards









# **Openness**SH-PSS Reflection Criteria Cards







#### **Openness**

#### WHAT

Accessibility of knowledge, technology and other resources; the transparency of action.

#### **HOW TO JUDGE**

Is your smart home product able to detect and connect with other SH-PSS? Would your other smart products be able to perform task by a single command.



Criteria

# Design Brief


#### Smart Home Product Service System (SH-PSS)

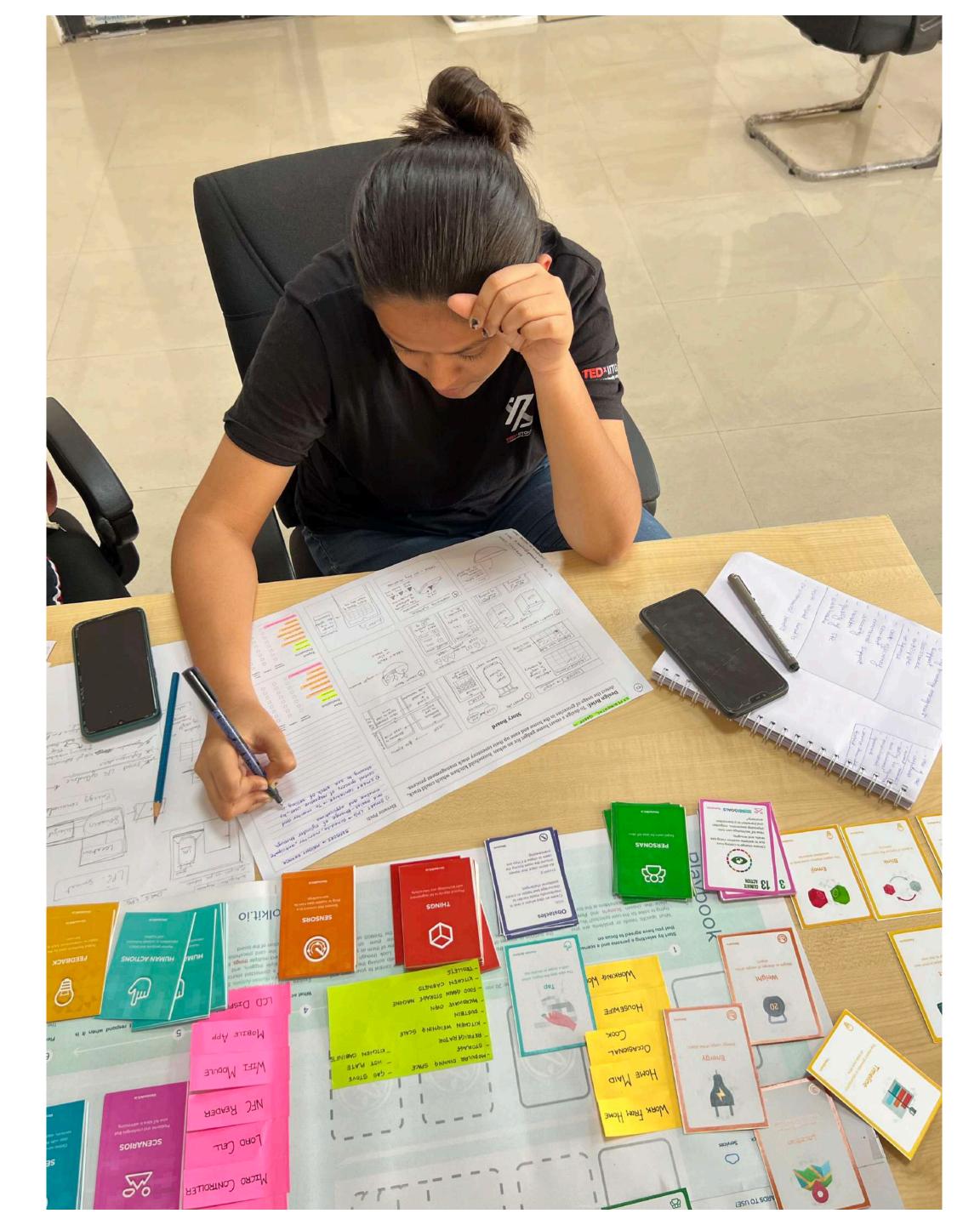
To design a smart gadget for an urban household kitchen which could track, detect the usage of groceries in the home, and ease up their inventory stock management process.

Treatment 1: Control Group: Without SH-PSS Toolkit

Treatment 2: Experimental Group: With SH-PSS Toolkit

N = 15




















# **Evaluation Sheet**Peer and Expert Evaluation

|                       | Extremely<br>Unlikely | Unlikely | or less<br>Unlikely | Neutral | or less<br>likely | Likely | Extremely<br>Ilikely |
|-----------------------|-----------------------|----------|---------------------|---------|-------------------|--------|----------------------|
| Ease of Use           |                       |          |                     |         |                   |        |                      |
|                       | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Usefulness            | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Context Awareness     |                       |          |                     |         | ·                 |        |                      |
| Context Awareness     | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Multi-functional      |                       |          |                     |         |                   |        |                      |
|                       | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Ability to Co-operate |                       |          |                     |         |                   |        |                      |
|                       | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Personalization       | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
|                       |                       |          |                     |         |                   |        |                      |
| Openness              | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |
| Service-Dominant      |                       |          |                     |         |                   |        |                      |
| Design                | 1                     | 2        | 3                   | 4       | 5                 | 6      | 7                    |

## 1: Perceived Ease of Use

#### **Technology Adoption**

| Null Hypothesis 1.1 (H <sub>1.1</sub> ):      | In the ideations, there is no significant difference between the ratings of peers on the Perceived Ease-of-use attribute, for a design concept in T1 and T2. |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 1.1a (H <sub>1a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Perceived Ease-of-use attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 1.2 ( <b>H</b> <sub>1</sub> ):  | In the ideations, there is no significant difference between the ratings of experts on the Perceived Ease-of-use attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 1.2a (H <sub>1.2a</sub> ): | In the ideations, there is significant difference between the ratings of experts on the Perceived Ease-of-use attribute, for a design concept in T1 and T2.    |

# 2: Perceived Usefulness

### **Technology Adoption**

| Null Hypothesis 2.1 (H <sub>2.1</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Perceived Usefulness attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 2.1a (H <sub>2.1a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Perceived Usefulness attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 2.2 ( <b>H</b> <sub>2.2</sub> ): | In the ideations, there is no significant difference between the ratings of experts on the Perceived Usefulness attribute, for a design concept in T1 and T2. |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 2.2a (H <sub>2.2a</sub> ):  | In the ideations, there is significant difference between the ratings of experts on the Perceived Usefulness attribute, for a design concept in T1 and T2.    |

# 3: Context Awareness

| Null Hypothesis 3.1 (H <sub>3.1</sub> ): | In the ideations, there is no significant difference between the ratings of peers on the Context Awareness attribute, for a design concept in T1 and T2. |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                        | In the ideations, there is significant difference between the ratings of peers on the Context Awareness attribute, for a design concept in T1 and T2.    |

| MILLI HANDOIDAGIG 3 2 (Haa). | In the ideations, there is no significant difference between the ratings of experts on the Context Awareness attribute, for a design concept in T1 and T2. |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | In the ideations, there is significant difference between the ratings of experts on the Context Awareness attribute, for a design concept in T1 and T2.    |

# 4: Multi-functional

| Null Hypothesis 4.1 (H <sub>4.1</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Multi-functional attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 4.1a (H <sub>4.1a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Multi-functional attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 4.2 ( <b>H</b> <sub>4.2</sub> ): | In the ideations, there is no significant difference between the ratings of experts on the Multi-functional attribute, for a design concept in T1 and T2. |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 4.2a (H <sub>4.2a</sub> ):  | In the ideations, there is significant difference between the ratings of experts on the Multi-functional attribute, for a design concept in T1 and T2.    |

# 5: Ability to Co-operate

| Null Hypothesis 5.1 ( <b>H</b> <sub>5.1</sub> ): | In the ideations, there is no significant difference between the ratings of peers on the Ability to Co-operate attribute, for a design concept in T1 and T2. |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                         | In the ideations, there is significant difference between the ratings of peers on the Ability to Co-operate attribute, for a design concept in T1 and T2.    |

|            | In the ideations, there is no significant difference between the ratings of experts on the Ability to Co-operate attribute, for a design concept in T1 and T2. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>-</b> . | In the ideations, there is significant difference between the ratings of experts on the Ability to Co-operate attribute, for a design concept in T1 and T2.    |

# 6: Personalisation

| Null Hypothesis 6.1 ( <b>H</b> <sub>6.1</sub> ): | In the ideations, there is no significant difference between the ratings of peers on the Personalisation attribute, for a design concept in T1 and T2. |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 6.1a (H <sub>6.1a</sub> ):  | In the ideations, there is significant difference between the ratings of peers on the Personalisation attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 6.2 ( <b>H</b> <sub>6.2</sub> ): | In the ideations, there is no significant difference between the ratings of experts on the Personalisation attribute, for a design concept in T1 and T2. |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 6.2a (H <sub>6.2a</sub> ):  | In the ideations, there is significant difference between the ratings of experts on the Personalisation attribute, for a design concept in T1 and T2.    |

# 7: Openness

| Null Hypothesis 7.1 (H <sub>7.1</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Openness attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 7.1a (H <sub>7.1a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Openness attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 7.2 (H <sub>7.2</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Openness attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 7.2a (H <sub>7.2a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Openness attribute, for a design concept in T1 and T2.    |

# 8: SD Design

#### Service Dominant Design Ability Enhancement

| Null Hypothesis 8.1 (H <sub>8.1</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Service dominant attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 8.1a (H <sub>8.1a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Service dominant attribute, for a design concept in T1 and T2.    |

| Null Hypothesis 8.2 (H <sub>8.2</sub> ):        | In the ideations, there is no significant difference between the ratings of peers on the Service dominant attribute, for a design concept in T1 and T2. |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 8.2a (H <sub>8.2a</sub> ): | In the ideations, there is significant difference between the ratings of peers on the Service dominant attribute, for a design concept in T1 and T2.    |

|      |                         | p-value | Result                   | T1 Peer-<br>Mean | T2 Peer-<br>Mean |
|------|-------------------------|---------|--------------------------|------------------|------------------|
| H1.1 | Perceived Ease of Use   | <0.001  | Null Hypothesis Rejected | 3.13             | 5.67             |
| H2.1 | Perceived Usefulness    | <0.001  | Null Hypothesis Rejected | 3.40             | 5.27             |
| H3.1 | Context Awareness       | <0.001  | Null Hypothesis Rejected | 2.73             | 5.53             |
| H4.1 | Multi-functional        | <0.001  | Null Hypothesis Rejected | 2.20             | 4.73             |
| H5.1 | Ability to Co-operate   | <0.001  | Null Hypothesis Rejected | 1.80             | 4.60             |
| H6.1 | Personalisation         | <0.001  | Null Hypothesis Rejected | 2.40             | 5.00             |
| H7.1 | Openness                | <0.001  | Null Hypothesis Rejected | 1.87             | 4.27             |
| H8.1 | Service Dominant Design | <0.001  | Null Hypothesis Rejected | 2.47             | 5.80             |

|      |                         | p-value | Result                   | T1 Expert-<br>Mean | T2 Expert-<br>Mean |
|------|-------------------------|---------|--------------------------|--------------------|--------------------|
| H1.2 | Perceived Ease of Use   | <0.001  | Null Hypothesis Rejected | 3.33               | 5.27               |
| H2.2 | Perceived Usefulness    | <0.001  | Null Hypothesis Rejected | 3.07               | 5.33               |
| H3.2 | Context Awareness       | <0.001  | Null Hypothesis Rejected | 2.93               | 5.60               |
| H4.2 | Multi-functional        | <0.001  | Null Hypothesis Rejected | 2.87               | 5.07               |
| H5.2 | Ability to Co-operate   | <0.001  | Null Hypothesis Rejected | 2.13               | 4.80               |
| H6.2 | Personalisation         | <0.001  | Null Hypothesis Rejected | 3.27               | 5.73               |
| H7.2 | Openness                | <0.001  | Null Hypothesis Rejected | 1.80               | 4.07               |
| H8.2 | Service Dominant Design | <0.001  | Null Hypothesis Rejected | 2.60               | 6.13               |

# 9: Perceived Ease of Use

### **Technology Adoption**

| Null Hypothesis 9.1 (H <sub>9.1</sub> ):      | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Perceived Ease-of-use attribute, for a design concept in T1. |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 9.1a (H <sub>1a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Perceived Ease-of-use attribute, for a design concept in T1.    |

| Null Hypothesis 9.2 (H <sub>9.2</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Perceived Ease-of-use attribute, for a design concept in T2. |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 9.2a (H <sub>9.2a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Perceived Ease-of-use attribute, for a design concept in T2.    |

## 10: Perceived Usefulness

### **Technology Adoption**

| Null Hypothesis 10.1 (H <sub>10.1</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Perceived Usefulness attribute, for a design concept in T1. |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 10.1a (H <sub>10.1a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Perceived Usefulness attribute, for a design concept in T1.    |

| Yuli Hypotnesis 10.2<br>'H <sub>10.2</sub> )·     | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Perceived Usefulness attribute, for a design concept in T2. |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 10.2a (H <sub>10.23</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Perceived Usefulness attribute, for a design concept in T2.    |

## 11: Context Awareness

| Null Hypothesis 11.1 (H <sub>11.1</sub> ): | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Context Awareness attribute, for a design concept in T1. |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Context Awareness attribute, for a design concept in T1.    |

| Null Hypothesis 11.2 (H <sub>11.2</sub> ): | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Context Awareness attribute, for a design concept in T2. |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Context Awareness attribute, for a design concept in T2.    |

# 12: Multi-functional

| Null Hypothesis 12.1 (H <sub>12.1</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Multi-functional attribute, for a design concept in T1. |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 12.1a (H <sub>12.1a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Multi-functional attribute, for a design concept in T1.    |

| Null Hypothesis 12.2 (H <sub>12.2</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Multi-functional attribute, for a design concept in T2. |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 12.2a (H <sub>12.2a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Multi-functional attribute, for a design concept in T2.    |

# 13: Ability to Co-operate

| Null Hypothesis 13.1 (H <sub>13.1</sub> ): | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Ability to Co-operate attribute, for a design concept in T1. |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Ability to Co-operate attribute, for a design concept in T1.    |

| Null Hypothesis 13.2 (H <sub>13.2</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Ability to Co-operate attribute, for a design concept in T2. |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 13.2a (H <sub>13.2a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Ability to Co-operate attribute, for a design concept in T2.    |

# 14: Personalisation

|                       | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Personalisation attribute, for a design concept in T1. |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _   / \     / \     / | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Personalisation attribute, for a design concept in T1.    |

| Null Hypothesis 14.2 (H <sub>14.2</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Personalisation attribute, for a design concept in T2. |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 14.2a (H <sub>14.2a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Personalisation attribute, for a design concept in T2.    |

# 15: Openness

| Null Hypothesis 15.1 (H <sub>15.1</sub> ): | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Openness attribute, for a design concept in T1. |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Openness attribute, for a design concept in T1.    |

| Null Hypothesis 15.2 (H <sub>15.2</sub> ): | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Openness attribute, for a design concept in T2. |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Openness attribute, for a design concept in T2.    |

# 16: SD Design

#### Service Dominant Design Ability Enhancement

| Null Hypothesis 16.1 (H <sub>16.1</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Service Dominant Design attribute, for a design concept in T1. |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 16.1a (H <sub>16.1a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Service Dominant Design attribute, for a design concept in T1.    |

| Null Hypothesis 16.2 (H <sub>16.2</sub> ):        | In the evaluation ratings, there is no significant difference between the ratings of peer and the rating of expert on the Service Dominant Design attribute, for a design concept in T2. |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Hypothesis 16.2a (H <sub>16.2a</sub> ): | In the evaluation ratings, there is significant difference between the ratings of peer and the rating of expert on the Service Dominant Design attribute, for a design concept in T2.    |

|       |                         | p-value | Result                   | T1 Peer-<br>Mean | T1 Expert-<br>Mean |
|-------|-------------------------|---------|--------------------------|------------------|--------------------|
| H9.1  | Perceived Ease of Use   | 0.486   | Null Hypothesis Accepted | 3.13             | 3.33               |
| H10.1 | Perceived Usefulness    | 0.313   | Null Hypothesis Accepted | 3.40             | 3.07               |
| H11.1 | Context Awareness       | 0.458   | Null Hypothesis Accepted | 2.73             | 2.93               |
| H12.1 | Multi-functional        | 0.012   | Null Hypothesis Accepted | 2.20             | 2.87               |
| H13.1 | Ability to Co-operate   | 0.173   | Null Hypothesis Accepted | 1.80             | 2.13               |
| H14.1 | Personalisation         | 0.032   | Null Hypothesis Accepted | 2.40             | 3.27               |
| H15.1 | Openness                | 0.751   | Null Hypothesis Accepted | 1.87             | 1.80               |
| H16.1 | Service Dominant Design | 0.610   | Null Hypothesis Accepted | 2.47             | 2.60               |

|       |                         | p-value | Result                   | T2 Peer-<br>Mean | T2 Expert-<br>Mean |
|-------|-------------------------|---------|--------------------------|------------------|--------------------|
| H9.2  | Perceived Ease of Use   | 0.138   | Null Hypothesis Accepted | 5.67             | 5.27               |
| H10.2 | Perceived Usefulness    | 0.774   | Null Hypothesis Accepted | 5.27             | 5.33               |
| H11.2 | Context Awareness       | 0.818   | Null Hypothesis Accepted | 5.53             | 5.60               |
| H12.2 | Multi-functional        | 0.334   | Null Hypothesis Accepted | 4.73             | 5.07               |
| H13.2 | Ability to Co-operate   | 0.510   | Null Hypothesis Accepted | 4.60             | 4.80               |
| H14.2 | Personalisation         | 0.077   | Null Hypothesis Accepted | 5.00             | 5.73               |
| H15.2 | Openness                | 0.486   | Null Hypothesis Accepted | 4.27             | 4.07               |
| H16.2 | Service Dominant Design | 0.096   | Null Hypothesis Accepted | 5.80             | 6.13               |

**RQ1: Answer** 

#### • RQ1:

What framework and toolkit Product-Service-System (PSS) designers can use in Smart Home PSS Design to ensure new technology acceptance and adoption by the target consumer?

#### • Result:

Technology Acceptance Model (TAM).

- (i) Perceived Ease of Use and
- (ii) Perceived Usefulness

**RQ2: Answer** 

#### • RQ2:

Can existing technology adoption model be considered as a mean to adapt a new framework and toolkit for product service system designers in the context of smart home.

#### • Result:

Through literature review and interview with the experts we have identified 7 toolkits. Tiles IoT Inventor Toolkit

**RQ3: Answer** 

#### • RQ3:

What is the smart home PSS design framework with special emphasis to service dominance.

#### Result:

We have evolved a Service-Dominant SH-PSS design framework. This framework was considered in the development of proposed "SH-PSS *IoT Inventor Toolkit*". We have included service dominance as criteria in the list of criterions for evaluating our proposed toolkit.

**RQ4: Answer** 

#### • RQ4:

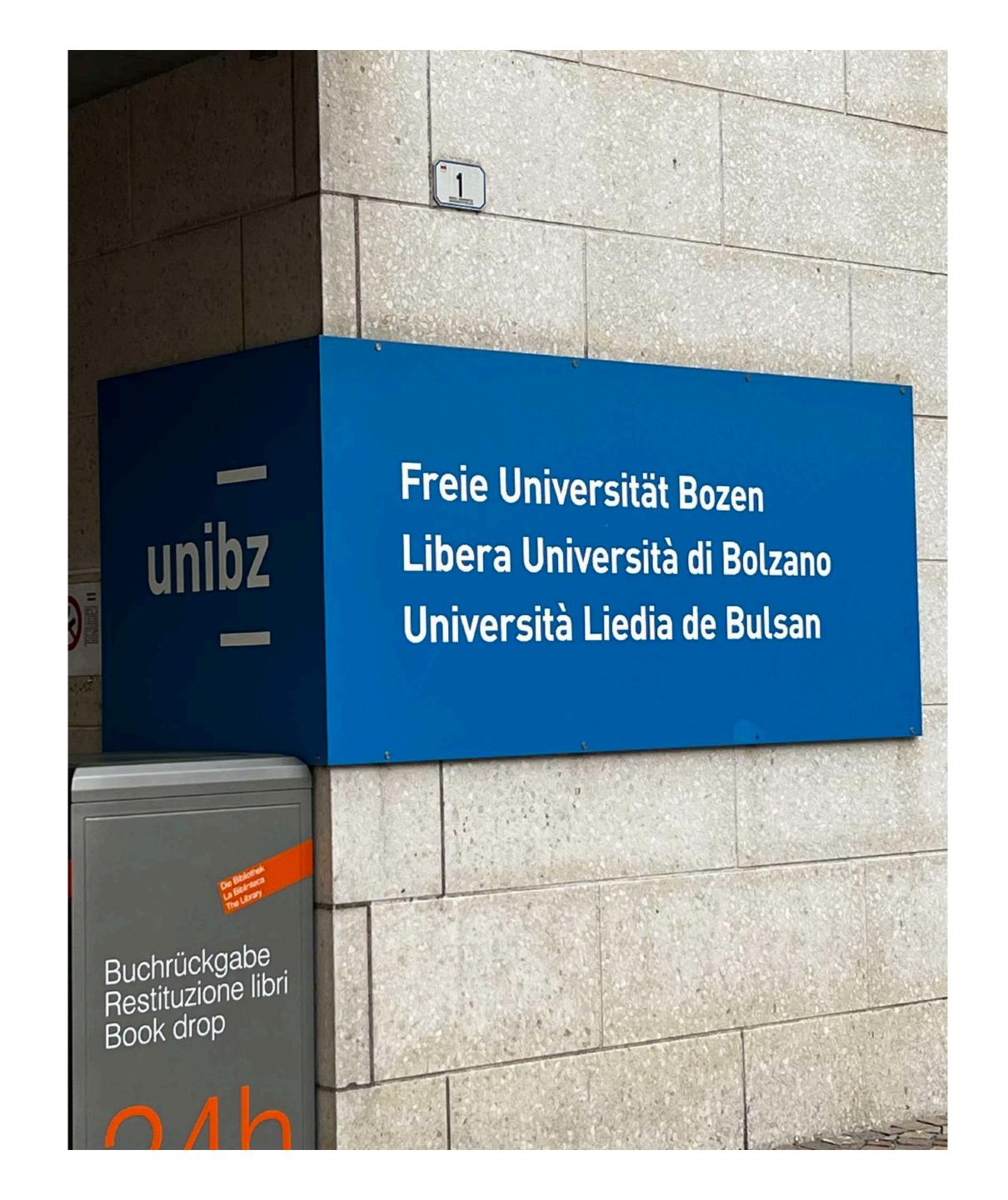
How to customise the generic PSS design toolkit in the context of smart home PSS design considering context awareness, multi-functionality, ability to co-operate, personalisation, openness.

#### Result:

We have selected "Tiles IoT toolkit" for customisation in the context of smart home projects. The proposed toolkit is "*SH-PSS Innovator Toolkit*". In this new toolkit we have developed new SH-PSS Things Card, Persona, Mission Card, Sensors Card, Service Card and Reflection Criteria Cards. We conducted a study to analyse characteristics of SH-PSS through Kano Model approach. On the basic of this study, reflection criterion was defined viz. context awareness, multi-functionality, ability to co-operate, personalisation, openness. We have included all the five reflection criteria in the list of criterions for evaluating our proposed toolkit.

# Publication Journal

#### Archive of Design Research


Ganvir, L., & Kalita, C. P. (2022). Adoption of Socio-Cultural Aspects in PSS Design for Smart Home Products: An Integrative Review. *Archives of Design Research*, 35(4), 7-29. (Published)

### Publication

#### Conference

- 1. Ganvir, L., Kalita, P.C., (2020). User-Centric Product Design Strategy For Grocery Monitoring in Indian Context. In: Digital Proceedings of **TMCE 2020**, 469-476, at <a href="mailto:tmce.io.tudelft.nl/proceedings">tmce.io.tudelft.nl/proceedings</a>
- 2. Ganvir, L., & Kalita, P. C. (2021). Design Thinking Approach in Identification of Service Design Based on User Interface for Grocery Monitoring System in Indian Context. In Design for Tomorrow—Volume 3: Proceedings of ICoRD 2021 (pp. 881-893). Singapore: Springer Singapore.
- 3. Ganvir, L., & Kalita, P. C. (2023). Design of Smart Home Product Service System in Indian context. International Conference on Research into Design. ICoRD 2023. Springer, Singapore.
- 4. Ganvir, L., & Kalita, P. C. (2023). Design of Smart Home Product Service Systems (SH-PSS). International Symposium on Industrial Engineering and Automation. **ISIEA 2023.** University of Bozen-Bolzano.
- 5. Ganvir, L., & Kalita, P. C. (2023). Analysing Characteristics of Smart Home Product Service System through Kano Model Approach. International Symposium on Industrial Engineering and Automation. ISIEA 2023. University of Bozen-Bolzano.
- 6. Ganvir, L., & Kalita, P. C. (2023). Shaping Smart Home Product Service System (SH-PSS)Reflection Criteria Cards for Tiles Not Inventor Toolkit. International Conference on Engineering & Product Design Education. **E&PDE 2023**, Elisava Barcelona School of Design and Engineering.

# Thank You

